
Original specifications by Dave Hecker and Steve Stephenson
Additional modifications by Dave Hecker and Bill Tudor

Seven Hills Solutions Specialists
1254 Ocala Road

Tallahassee, FL 32304

Technical help: support@sevenhills.com
Everything else: sales@sevenhills.com

Notice
All contents and subsequent revisions of this document are Copyright © 1991-1998 Seven Hills
Solutions Specialists.

Thanks go to the Committee
The following people reviewed the specifications for Babelfish at one time or another: Bill Tudor •
BrainStorm Software • Bryan “Zak” • Dave Hecker • Dave Lyons • Ewen Wannop • Jason Harper • Joe
Wankerl • Lunatic E’Sex • Matt Deatherage • Mike Nuzzi • Richard Bennett • Steve “Diz” Disbrow •
Steve Stephenson • Bill Heineman • Ian Brumby • Mike Westerfield • Tony Diaz • Paul Parkhurst

COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS PAGE 1

Table Of Contents
Babelfish..1

What Is It? ...1
Why Use It?...1
Miscellaneous Topics..2

Overview—Using Babelfish...3
Communicating with Babelfish...3
Starting Babelfish..4
Importing a File ...5
Exporting a File ...8

Definitions and Constants..11
Documentation Structure...11
Miscellaneous..11
Storage Units ...11
Constants ...12

The Transfer Record..13
Status ...13
MiscFlags ..14
DataKinds..14
TransNum..14
UserID ...14
ProgressAction ..15
FullTherm..15
CurrentTherm..15
MsgPtr ...15
DataRecordPtr ...15
FilePathPtr ...16
FileNamePtr...16

Babelfish’s Routines ...17
Housekeeping Routines..18

BFStartUp ($9001)..18
BFShutDown ($9002) ...19
BFVersion ($9004)..19

General Routines ..20
BFChooseTrans ($9011) ...20
BFGetFile ($9012)...23
BFImportThis ($9013)...25
BFRead ($9014) ..27
BFPutFile ($9015)...29
BFExportThis ($9016)...30
BFWrite ($9017) ...32
BFProgress ($9018)...33

Advanced Routines...34
BFMatchKinds ($9021)...34
BFMatchFile ($9022)..35
BFTransNum2Name ($9023)..36
BFTransName2Num ($9024)..37
BFGetTrData ($9025) ...38
BFShowInfo ($9026)...39
BFDoOptions ($9027)...40
BFLoadData ($9028)...41
BFSaveData ($9029) ...42
BFLoadSupport ($902A)...42
BFUnloadSupport ($902B) ...43

The Translator Format..44
TrVersion...45
TrData..46
TrAbout ...46
TrCantLaunch..46

PAGE 2 COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS

TrImportOptions ..47
TrImportInfo ..48
TrFilter...49
TrExportOptions ..51
TrExportInfo ..52
TrInit ..53
TrStartUp ($9101)..54
TrShutDown ($9102)...55
TrRead ($9103)..56
TrWrite ($9104)...57

Babelfish Support Routines..58
Support Routine File Format..58
SrVersion ...59
SrAbout ..59
SrCantLaunch ..59
SrRequestName..59
SrInit ..59
SrStartUp ($Bxxx) ...60
SrShutdown ($Bxxx)..60
SrGetVersion ($Bxxx) ...61

Suggested Support Routines ..62
Remap PixelMap..62
Convert Quotes ..63

Standard Data Format Definitions ..64
Format 0: No data returned ..66

Format 5: Font..67

Format 2: Graphic—PixelMap...69

Format 4: Graphic—QuickDraw II Picture..71

Format 3: Graphic—True Color Image..73

Format 1: Text..75

Questions and Answers...82

COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS PAGE 3

Babelfish

What Is It?
Babelfish is a tool that applications use to import and export (or load and save) data without knowing
anything about a particular data format. Through Babelfish, the application relies upon translators to do
all the specifics of reading and writing files.

An application can use standard functions to display the standard Babelfish interface to the user
(including a “Progress Window”), or an application can use “advanced” functions to control
import/export with no user interface. Babelfish even allows several translators to be active at a single
time.

Babelfish functions equally well in both 320 and 640 modes so any application can use it. NOTE: A
particular translator might operate only in one mode; this is not a problem for Babelfish.

Babelfish requires Apple IIGS System Disk 6.0 or later.

Why Use It?
One big benefit is saving repetitive coding time. Instead of writing three different routines to import
three different file formats, you need to write only one chunk of code to import a single type of data.
Through Babelfish you will instantly have access to many file formats. And your application’s
capabilities will grow every single time a new translator is written.

Your application’s code is smaller because translators are separate entities. And because they’re
separate they can be updated or enhanced without changing application code.

Using Babelfish will give a variety of applications a standard way to present import/export capabilities,
making users more comfortable.

If you’re going to write code to import and/or export a certain type of file, if you write it as a translator
instead of hard-coding it into your program, you’re making it easy for any application to read/write that
same file format. This hopefully will promote goodwill and sharing among developers.

PAGE 4 COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS

Miscellaneous Topics

Claris XTND

We’re aware of this on the Macintosh. In short, we think our implementation is better, more flexible,
and better prepared for future growth.

GraphicWriter III Translators

For those of you familiar with the GraphicWriter III translator format, here is a brief list of differences
between “Babelfish Translators” and “GW III Translators”:

• A translator now has several required resources which identify the translator to Babelfish.

• When importing with GW III, you first select the format of the file you’re interested in, then you
pick the file (the translator selection drives the files you can choose). With Babelfish it’s done the
proper way: The user is presented a list of files which can be imported, and his file selection drives
which translators can be chosen. Usually the user has no idea what format a file is; by selecting the
file first, we can tell him which translators apply!

• Babelfish does not create a direct page for translator use. If you need a DP you must create,
maintain, and dispose of it yourself.

• In the old scheme if you were a text translator you passed the text record; if you were a graphic
translator you passed the graphic record. Because Babelfish cannot know about the specific formats
of data, there are now two main records to deal with: The first is a standard “Transfer Record” or
XferRec for short. The second is the specific data format’s record.

The XferRec has the same format and length for all translators. As before, the specific data format’s
record is specific to the translator.

• With GW III only one translator is active at a time. With Babelfish, several translators can be open
and active at the same time.

COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS PAGE 5

Overview—Using Babelfish

Communicating with Babelfish
Inter-Process Communication (IPC) is the method for communicating among the various programs
involved in the translation process. The application sends requests to Babelfish. Babelfish sends
requests to the translators. The translators may also send requests to Babelfish or to supporting
subtranslators. See also “Programmer’s Reference for System 6.0”, Chapter 30.

Babelfish installs a message handler (AcceptRequests) in order to respond to the assigned requests made
by applications and translators. Each translator also installs a message handler to respond to the
assigned requests made by Babelfish. Support files also install a message handler in order to respond to
the assigned requests made by applications and translators.

If the message receiver is not present when called, the Tool Locator will return error $0120
(reqNotAccepted).

Applications and translators communicate with BF by calling SendRequest with the proper request code,
directing the request to “Seven Hills~Babelfish~”, with a sendHow value of sendToName +
stopAfterOne.

Parameters are passed between the sender and receiver in dataIn and dataOut. In all cases, dataIn
and dataOut are pointers to buffers containing the parameters.

Even though some input parameters are less than 4 bytes and could be placed directly in dataIn, for
consistency they will always be placed in a location that is pointed to by dataIn.

The Tool Locator fills in the first word of the structure pointed to by dataOut with the number of times
the message was received. This is a meaningless value as all messages passed between participants in
the translation process must send their messages with a sendHow that includes stopAfterOne; which
means that the Tool Locator will either make this value a one if the message was accepted or return an
error (reqNotAccepted).

Some messages don’t need to return any data to the sender. Technically, these messages could pass NIL
for dataOut; however, there would be no way to report any error or status information. (If there were
an error, the receiver could only signal it by refusing to accept the message, which would not return an
accurate picture to the sender.) Throughout Babelfish, all message traffic will use dataOut; and it will
always point to a structure that begins with 2 words–the first is a throwaway for the Tool Locator, and
the second is the receiver’s result code–followed by any returned data.

PAGE 6 COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS

Starting Babelfish
The application calls BFStartUp to “log in” with Babelfish.

BFStartUp follows these steps:

1) If Babelfish is started already, skip to step 3.

2) If Babelfish is not started:
Initializes a “startups” counter to 0.
Walks through a special folder where translators are stored, opening each translator’s resource fork
and loading in the TrData (contains identifying information about the translator) and TrFilter (similar
to a standard file filter) resources. It then uses this information to build an internal table of the state
of the translator universe. NOTE: Only properly-formatted translators are allowed; if a bad file is
found it gets skipped (only unrecoverable errors will cause BFStartUp to fail).

3) BFStartUp increments the “startups” counter and returns the XferRec size value.

NOTE: These steps are purely to make understanding the startup process easier; the actual method that
Babelfish uses to start up and shut down is not discussed here.

You may start Babelfish only when you need it. However, for best speed performance it is highly
recommended that you start up Babelfish only once (either at application startup or the first time
Babelfish is needed) and then leave it active until your program quits.

If you use Babelfish in an NDA, it is recommended that you start up Babelfish during NDAOpen, or
start it the very first time you need it. For speed you should then leave Babelfish started until
DeskShutDown (and then call BFShutDown only if you successfully started it).

Note that Babelfish can be started at the same time by multiple applications and NDAs. However,
Babelfish is not re-entrant and will not accept messages from another application while any request is
still in progress (i.e. calling Babelfish from an interrupt routine won’t work). Further note that an
individual translator may not be used by more than one application at the same time (a particular
translator can be duplicated in the Finder, which creates a “unique” translator as far as Babelfish is
concerned).

COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS PAGE 7

Importing a File
The application gets a block of memory for the XferRec (of the size returned from BFStartUp) and fills
in some of the fields. Among other things, the application specifies “importing” and it specifies which
Kinds of data it wants to receive.

BFGetFile

If the application does not have a filename already chosen for importation, it calls BFGetFile for the user
to pick one. BFGetFile uses a custom SFPGetFile2 to interact with the user.

The displayed list of files is built by calling each translator’s TrFilter routine (TrFilter uses the data in
the GetDirEntry record to form a rating value on its ability to translate the file). The checkbox
determines what range of files is displayed.

After the file list is built and displayed, the user interacts with the dialog until a file is chosen. When a
folder is highlighted, the translator list is empty and the Info and Options buttons are dim.

When a file is highlighted, the translator list fills with an alphabetical list of all the translators that can
import the file. The translator with the highest ranking becomes the selected item and is scrolled to, if
necessary. The Info button is active; the Options button is active only if the highlighted translator has
special import options that can be set.

If Info is selected, Babelfish displays a modal window using the translator’s TrVersion and TrImportInfo
resources:

PAGE 8 COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS

If Options is selected, Babelfish calls TrImportOptions so that translator can interact with the user. The
translator presents a dialog of its own making that gathers whatever preference info is needed to do the
importation. For example:

BFImportThis

Once a file is chosen (either through BFGetFile or some other means), the application calls
BFImportThis. Babelfish loads the specified translator along with its stored options, then calls
TrStartUp for importation.

The translator’s TrStartUp sets up buffers and variables and opens the file. It also sets the kind of data
(in the XferRec) to reflect the single, exact kind of data that will be returned to the application.

If the application specified that progress was allowed, Babelfish opens the Progress Window. The
Progress Window consists of a thermometer and an area in which the translator may display messages
for the user (during importation only the translator may update the message):

The message area keeps the user occupied/informed during the importation. For example, a “Super Hi-
Res Graphics” translator that can import multiple file formats (Unpacked Screens, Packed Screens,
Apple Preferred Files, etc.) might want to state the exact kind of file being imported, as well as updating
the message during the importation:

Control is returned to the application. If an error is returned from BFImportThis then the application
must cancel its import process. Otherwise, the import process continues…

COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS PAGE 9

If the application originally stated it could receive more than a single kind of data, it must now check the
transfer record to determine exactly which kind of data is being returned.1

The application prepares itself to receive a particular data format, then enters the following loop:

1) The application sets Status and calls BFRead.

2) Babelfish checks Status to see if the application needs to abort for some reason (if so, Babelfish calls
TrShutDown and returns to the application…see step 4).

3) Babelfish calls the translator’s TrRead routine so the translator can load/process a chunk of the file.
TrRead fills in the appropriate XferRec fields (Status, progress thermometer value, user message,
data, etc.) and returns to Babelfish.

4) Babelfish checks Status:
If “done” or “continue” Babelfish updates the Progress Window.
If “done” or “abort” Babelfish calls TrShutDown.
Return to the application.

5) The application checks Status:
If “continue” then store the data into private structures and go to step 1.
If “done” then all the data has been received and you’re ready to go!
If “abort” then dispose of any imported data because it’s not valid.

After receiving “done” or “abort,” the application does not make any further calls to Babelfish (except
when he’s completely done using Babelfish he will call BFShutDown). Once Babelfish says “done” or
“abort,” the importation is finished as far as Babelfish is concerned (the translator has already been shut
down, the Progress Window is closed if necessary, etc.).

1 Even if you only plan to support a single data format, it is recommended that you still follow the same
flow outlined here. This provides consistent visual interface to the user, and it makes it easier for you
to support additional formats at a later date (even if you think you might never support another
format, you still might, so why no make it easier on yourself?).

PAGE 10 COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS

Exporting a File
The application gets a block of memory for the XferRec (of the size returned from BFStartUp) and fills
in some of the fields. Among other things, the application specifies “exporting” and it specifies the
single, exact Kind of data it will be exporting.

BFPutFile

If the application does not have a filename already chosen for exportation, it calls BFPutFile for the user
to specify one. BFPutFile uses SFPPutFile2 to interact with the user:

The translator list box displays an alphabetical list of all the translators that can export the specified kind
of data. Because all export translators should be able to handle a particular data format equally well, the
first item on the list is selected. The Info button is active; the Options button is active only if the
highlighted translator has special export options that can be set.

If Info is selected, Babelfish displays a modal window using the translator’s TrVersion and TrExportInfo
resources:

If Options is selected, Babelfish calls TrExportOptions so that translator can interact with the user. The
translator presents a dialog of its own making that gathers whatever preference info is needed to do the
exportation. For example:

“OK” changed to “Accept”

COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS PAGE 11

BFExportThis

Once a file name and location are specified (either through BFPutFile or some other means), the
application calls BFExportThis. Babelfish loads the chosen translator along with its stored options, then
calls TrStartUp for exportation.

The translator’s TrStartUp sets up buffers and variables and creates the file (deleting any existing file
first…user permission to replace would have happened at BFPutFile time, and permission is assumed to
have been given if the application directly calls BFExportThis).

If the application specified that progress was allowed, Babelfish opens the Progress Window. The
Progress Window consists of a thermometer and an area in which the application may display messages
for the user (during exportation only the application may update the message):

The message area keeps the user occupied/informed during the exportation.

Control is returned to the application. If an error is returned from BFExportThis then the application
must cancel its export process. Otherwise, the export process continues…

The application the enters the following loop:

1) The application fills in the appropriate XferRec fields (Status, progress thermometer value, optional
user message, data, etc.) and calls BFWrite and BFProgress if the progesss window has been turn on.

2) Babelfish checks Status:
If “done” or “continue” Babelfish updates the Progress Window.
If “done” or “abort” Babelfish calls TrShutDown (which closes—and possible deletes—the file) then
returns to the application.
If “continue” Babelfish continues…

3) Babelfish calls the translator’s TrWrite. TrWrite processes/writes a chunk of the file, then returns to
Babelfish.

4) Babelfish checks Status. If “continue” then return to the application; otherwise it’s an “abort” so
Babelfish calls TrShutDown (which deletes the export file) then returns to the application.

5) The application checks Status. If “continue” then go to step 1; otherwise it’s an “abort” so the
application must abort its exporting process.

After the application calls BFWrite with an “abort” or “done” status, the exportation is complete as far
as Babelfish is concerned (the translator is shut down, the Progress Window is closed if necessary, etc.).

PAGE 12 COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS

Definitions and Constants

Documentation Structure
The “Description” section gives a quick overview of the routine’s purpose.

The “Parameters” section shows the dataIn and dataOut values for the message request calls; or the
stack picture for those calls that pass their parameters on the stack.

The “Errors” section states what errors can be returned in the result word of dataOut. Message
senders must check this result first; if it is non-zero, the remaining data in dataOut is invalid.

The “Logic” section sometimes gives an overview of what happens in code. It is not complete (e.g.
error checking is omitted) and it’s not intended to list every single step that will be required.

The “Helpful Illustrations/Examples” section contains…Helpful Illustrations and/or Examples!

Miscellaneous
An “application,” as used in this document, refers to any program that issues calls to Babelfish (not
necessarily a standalone application…it could be an NDA or other compatible environment).

An import translator is one that can send data to an application. “Importing” is when a translator sends
data to an application.

An export translator is one that can receive data from an application. “Exporting” is when an
application sends data to a translator.

Storage Units
Boolean, Byte, Double Long, Fixed, Flag <unit>, Long, Reverse, Word, and so on are all the usual
definitions, as defined in Apple’s “Apple II File Type Notes.”

Except where specified otherwise, “String” is a Pascal-type string. This means it’s a length byte
followed by up to 255 bytes of ASCII data (note that some String fields place a lower limit on the
number of characters).

A C1InputString is the same as a WString. It is a length word followed by up to 65,535 bytes of data.

COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS PAGE 13

Constants

Error Codes
$0000 bfNoErr No error
$5300 bfBFNotStarted Haven’t done BFStartUp
$5301 bfBFBusy Babelfish is busy
$5302 bfMissingTools Required tools are not started
$5303 bfNoTransErr No translators available
$5304 bfTransBusy Specified translator is busy
$5305 bfNotSupported Translator function not supported
$5306 bfSupportNotFound Support routine was not found
$5307 bfBadUserID You called a routine you weren’t supposed to

Status Codes
{non-zero means stop the process}
$0000 bfContinue No error
$8000 bfDone Successful import/export completion
$8001 bfUserAbort Abort; user requested
$8002 bfBadFileErr Abort; during import it was discovered the file could not be imported by

the translator (either bad structure or turned out not to be the translator’s
file)

$8003 bfReadErr Abort; media error reading from the disk
$8004 bfWriteErr Abort; media error writing to the disk
$8005 bfMemErr Abort; memory error
$80FF bfAbortErr Abort; undefined error occurred

PAGE 14 COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS

The Transfer Record
The transfer record (or XferRec) is always created and disposed of by the application, regardless of
whether an import or export process is beginning. The transfer record is updated by the application,
Babelfish, and the translator. When BFStartUp is called, one of the things it does is return the size of
this record (in bytes). The application must use this returned value to create the transfer record.

The XferRec is the primary means of communication between the application and a translator.
Babelfish monitors the activity so it can perform certain housekeeping tasks (e.g. update the Progress
Window, shut down a translator when it’s done importing, etc.).

––––––––––––––––––––––––
$00 – ParmCount – Word–Number of Parameters (12)

––––––––––––––––––––––––
$02 – Status – 1 Word–The status of the translation

––––––––––––––––––––––––
$04 – MiscFlags – 2 Flag Word–Flags controlling the translation

––––––––––––––––––––––––
$06 – –

– –
– –
– DataKinds – 3 8 Flag Bytes—Flags for the kind of data
– –
– –
– –
––––––––––––––––––––––––

$0E – TransNum – 4 Word–The translator number to use
––––––––––––––––––––––––

$10 – UserID – 5 Word–The memory ID assigned to the translator
––––––––––––––––––––––––

$12 – ProgressAction – 6 Flag Word–Flags controlling the progress display
––––––––––––––––––––––––

$14 – FullTherm – 7 Word–The thermometer’s scale
––––––––––––––––––––––––

$16 – CurrentTherm – 8 Word–The thermometer’s mercury
––––––––––––––––––––––––

$18 – –
– MsgPtr – 9 Long–Pointer to C1inputString of message to display
– –
––––––––––––––––––––––––

$1C – –
– DataRecordPtr – 10 Long–Pointer to data record
– –
––––––––––––––––––––––––

$20 – –
– FilePathPtr – 11 Long–Pointer to C1inputString of import/export file path
– –
––––––––––––––––––––––––

$24 – –
– FileNamePtr – 12 Long–Pointer to pString of import/export file name
– –
––––––––––––––––––––––––

Status
Indicates the current status of the translation. See “Status Codes” in the “Constants” section for a
complete list of codes which can be used.

COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS PAGE 15

MiscFlags
Various flags controlling the translation:

Bit0 ShowProgessBit 0=suppress progress dialog
1=show progress dialog (the usual and recommended setting)

Bit1 ShowErrorsBit 0=suppress error dialogs
1=show error dialogs (the usual and recommended setting)

Bit2 MatchingBit 0=Loose
1=Standard (the usual and recommend setting)

Bit3 DirectionBit 0=importing
1=exporting

Bit4 SilentModeBit 0=normal operation
1=silent operation

Bits5-15 reserved (must be zero)

Silent Mode: If your translator must ask the user questions during import/export, examine this bit first.
If this bit is set you should not ask the user any questions, but instead default to the most logical
answers.

DataKinds
While Babelfish itself doesn’t treat different classes of data differently, individual translators do. In
order to distinguish different kinds of data, all data is categorized into types. Each data type is assigned a
single bit out of the 64 bits available in the Kinds of Data flag field:

Data Type Bit Set Value

0-No Data <none> 0

1-Text 0 1

2-Pixel Map 1 2

3-True Color 2 4

4-QDII Pict 3 8

5-Font 4 16

6-Sound 5 32

7-Animation 6 64

8-Publishing 7 128

By using bits to indicate data kinds, an application has the option of specifying whether it wants to
import one specific kind of data, or that it can import several different kinds of data. For example, when
a desktop publishing program asks Babelfish to get a file for importation, the application might specify
that it can import text, PixelMaps, and QuickDraw pictures (3 bits are set). Babelfish lets the user select
one of those kinds of files. After selection, Babelfish starts up the appropriate translator, and the
translator adjusts the Kind to indicate the one specific kind of data the application should prepare to
receive (1 bit is set).

TransNum
The TransNum is a relative index number assigned by Babelfish during BFStartup. As the Babelfish
universe is being built, each translator is numbered. Babelfish uses the TransNum internally to
distinguish between translators.

For applications wishing to use the advanced routines and select a specific translator, the functions
BFTransNum2Name and BFName2TransNum may be helpful.

PAGE 16 COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS

UserID
This is the base ID for the translator to use for all memory requests. The translator must use this ID and
must not call for a New ID. Aux IDs may be formed from this base number if the translator desires.

ProgressAction
This word is a collection of bits that Babelfish uses to determine which fields are valid and/or what
updating to perform in the Progress Window. Multiple bits may be used on a single call.

Bit0 NewMercury 1=CurrentTherm is valid; update the thermometer’s setting
0=Ignore CurrentTherm

Bit1 SetScale 1=FullTherm is valid; set the thermometer’s scale
0=Ignore FullTherm

Bit2 NewMessage 1=Update the message using the following bits
0=Leave the same message displayed

Bit3 UserMsg 1=MsgPtr is valid; display this message (and ignore the next bit)
0=Ignore MsgPtr; use the next bit instead

Bit4 StandardMsg 1=Show “Working...” message
0=Show no message (blank)

Bits5-15 reserved (must be zero)

FullTherm
The progress thermometer’s scale. When the thermometer is full, CurrentTherm will equal FullTherm.

CurrentTherm
The progress thermometer’s mercury (current setting). When the thermometer is full, CurrentTherm
will equal FullTherm. NOTE: CurrentTherm must either stay the same or increase…it must never
decrease!

MsgPtr
During import or export, messages can be displayed in the Progress Window. Do not get carried away
with long strings and large fonts as the area for display is limited and does not support scrolling.

To have Babelfish display a standard “Working…” message, set the NewMessage and the StandardMsg
bits in ProgressAction.

To display a message, pass a pointer to a WString (a length word followed by the string data bytes). The
string data bytes must be in the form of LETextBox2 (see TB1, page 10-44). Also set the NewMessage
and the UserMsg bits in ProgressAction.

To display no message at all, set the NewMessage bit and clear the UserMsg and StandardMsg bits in
ProgressAction..

To display a new message, pass a pointer to the new string and set the NewMessage and the UserMsg
bits in ProgressAction. Babelfish erases the old message and draws the new message.

After drawing the specified string Babelfish clears all of the bits in ProgressAction. This way, if no
changes are made to ProgressAction, the message shown will remain the same. This should help prevent
the same string from being drawn repeatedly.

COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS PAGE 17

DataRecordPtr
This is a pointer to a specific data record. The format of the data record depends upon the particular
kind of data being imported/exported. The specific data record formats are defined and discussed in the
“Standard Data Format Definitions” section.

FilePathPtr
This is a pointer to the path (C1InputString) of the file currently being imported/exported.

FileNamePtr
This is a pointer to the name (pString) of the file currently being imported/exported.

PAGE 18 COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS

Babelfish’s Routines
The following sections describe Babelfish’s housekeeping, general, and advanced routines.

When Babelfish completes a routine, it returns the most appropriate error code in the BFresult word in
the dataOut buffer. If the call has an XferRecPtr as one of its inputs, the Status field will contain the
most appropriate status (whether or not an error occurred).

The BFresult and Status work together. Applications should check the BFresult first to determine if a
serious error has occurred. If none has, the application should then check the Status and do whatever is
appropriate. For example, when an importation is completed successfully, the last BFRead call would
not return an error; however, the Status field would indicate that the importation was complete (bfDone).

In order to use Babelfish the following tools must be started: Desk Manager (which includes the 11 tools
needed for using NDA’s), Font Manager, List Manager, and Text Edit. Babelfish will start up and shut
down Standard File as needed.

COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS PAGE 19

Housekeeping Routines
This section describes Babelfish’s housekeeping routines.

BFStartUp ($9001)

Description

Starts up Babelfish for use by an application.

NOTE: Your application must make this call before it makes any other Babelfish calls!

NOTE: If this call is successful you must balance it with a BFShutDown call at some point!

NOTE: If BFStartUp returns an error you must not call BFShutDown!

When an application is ready to import or export a file, it must create and dispose of a block of memory
the size of XferRecSize.

Parameters

dataIn — Pointer to this structure:
––––––––––––––––––––––––

$00 UserID Word–The memory ID of the application
––––––––––––––––––––––––

dataOut — Pointer to this structure:
––––––––––––––––––––––––

$00 recvCount Word-Number of times the request was received
––––––––––––––––––––––––

$02 BFresult Word-Error code
––––––––––––––––––––––––

$04 XferRecSize Word-Size of the transfer record
––––––––––––––––––––––––

Errors
$0000 bfNoErr No error
$5301 bfBFBusy Babelfish is busy
$5302 bfMissingTools Required tools are not started
$5303 bfNoTransErr No translators available
Memory Mgr, GS/OS, Resource Mgr errors returned unchanged

PAGE 20 COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS

BFShutDown ($9002)

Description

Shuts down Babelfish. You must make this call (once and only once) if you successfully called
BFStartUp. You must not call BFShutDown if you did not call BFStartUp, or if you did call BFStartUp
but it returned an error.

Parameters

dataIn — Pointer to this structure:
––––––––––––––––––––––––

$00 UserID Word–The memory ID of the application
––––––––––––––––––––––––

dataOut — Pointer to this structure:
––––––––––––––––––––––––

$00 recvCount Word-Number of times the request was received
––––––––––––––––––––––––

$02 BFresult Word-Error code
––––––––––––––––––––––––

Errors

None

BFVersion ($9004)

Description

Returns the version number of Babelfish in Apple IIGS Long Version Format (see Tech Note #100).
This call could also be named “askBFAreYouThere”.

Parameters

dataIn — NIL

dataOut — Pointer to this structure:
––––––––––––––––––––––––

$00 recvCount Word-Number of times the request was received
––––––––––––––––––––––––

$02 BFresult Word-Error code
––––––––––––––––––––––––

$04 – version – Long-The version number
––––––––––––––––––––––––

Errors
None

COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS PAGE 21

General Routines
This section describes Babelfish’s general routines. Most applications will use these calls.

BFChooseTrans ($9011)

Description

BFChooseTrans is used when an application already knows which file to import or export, but it does
not know which translator to use.

Importing

Babelfish first builds a list of non-busy translators capable of importing the given Kinds of data. If at
least one translator is found, Babelfish gets information about the given file and calls each translator’s
TrFilter routine to get a ranking of that translators ability to import the file.

Based upon the ranking and the MiscFlags(MatchingBit) setting, Babelfish creates an alphabetical list of
just those translators that can import the file. The translator with the highest ranking becomes the
selected item, and is scrolled to if necessary. The following dialog is then presented (the prompt line can
be specified by the application; the illustration shows the default prompt line):2

The Info button is always active; the Options button is active only if the highlighted translator has
special import options that can be set.

Once the translator is chosen, the user clicks the Accept button and control returns to the application.
Typically the application would then begin the import process (see BFImportThis).

2 The “Accept” button is not named “Import” or “Open” because the user is not “Importing” or
“Opening” a translator…he is simply making a translator choice then Accepting that choice.

PAGE 22 COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS

Exporting

Babelfish builds an alphabetical list of non-busy translators capable of exporting the given Kind of data.
If at least one translator is found, Babelfish selects the first item and presents the following dialog (the
prompt line can be specified by the application; the illustration shows the default prompt line):

The Info button is always active; the Options button is active only if the highlighted translator has
special export options that can be set.

Once the translator is chosen, the user clicks the Accept3 button and control returns to the application.
Typically the application would then begin the export process (see BFExportThis).

Parameters

dataIn — Pointer to this structure:
––––––––––––––––––––––––

$00 – xferRecPtr – Long-Pointer to Transfer Record
––––––––––––––––––––––––

$04 – customPtr – Long-Pointer to the custom record (NIL for defaults)
––––––––––––––––––––––––

dataOut — Pointer to this structure:
––––––––––––––––––––––––

$00 recvCount Word-Number of times the request was received
––––––––––––––––––––––––

$02 BFresult Word-Error code
––––––––––––––––––––––––

Errors
$0000 bfNoErr No error
$5301 bfBFBusy Babelfish is busy
$5303 bfNoTransErr No translators available
Memory Mgr, GS/OS, Resource Mgr errors returned unchanged

Status
$0000 bfContinue No error
$8001 bfUserAbort User clicked Cancel
$8005 bfMemErr Abort; memory error
$80FF bfAbortErr Abort; undefined error occurred

3 Again, the “Accept” button is not named “Export” or “Save” because the user is not “Exporting” or
“Saving” a translator…he is simply making a translator choice then Accepting that choice.

COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS PAGE 23

Notes

NOTE: If customPtr is NIL the default prompt is used.

The customPtr record looks like this:
––––––––––––––––––––––––

$00 – ParmCount – Word–Number of Parameters (1)
––––––––––––––––––––––––

$02 – –
– promptPtr – 1 Long–Pointer to pString of prompt line
– –
––––––––––––––––––––––––

NOTE: If any field is NIL Babelfish’s default wording is used.

Before calling this routine, the application must make these Transfer Record fields valid:
Status (must be bfContinue)

MiscFlags–ShowErrorsBit (whichever you desire)

MiscFlags–MatchingBit (only required if importing; ignored if exporting)

MiscFlags–DirectionBit (whether importing or exporting)

DataKinds (if importing, several bits may be set; if exporting only one bit should be set)

FilePathPtr (only required if importing; ignored if exporting)

FileNamePtr (only required if importing; ignored if exporting)

Before calling TrImportOptions or TrExportOptions, Babelfish also makes these fields valid:
UserID

Before returning, Babelfish also makes these fields valid:
Status

TransNum (set to the translator the user selected)

PAGE 24 COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS

BFGetFile ($9012)

Description

If there is at least one non-busy translator capable of importing one of the given Kinds of data, this
routine presents a custom SFPGetFile2 dialog box. The prompt line and Open button name can be
specified by the application.

Using this dialog the user selects the file he wishes to import, then the translator he wants to use.
Optionally he may view an About box or change Options for any displayed translator. Once the file and
translator are chosen, the user clicks the Open button and control returns to the application. Typically
the application would then begin the import process (see BFImportThis).

NOTE: If you do not install the SFUtility INIT, two cosmetic problems are possible with the BFGetFile
dialog. The problems are purely cosmetic and will not cause a crash or any other user error: (1) When
the Volumes list is displayed, the popup may remain enabled. (2) When no files are displayed (empty
directory or a directory in which no files are importable), the popup may remain enabled with the full
list of translators that can import the given Kinds of Data shown, or, in some cases, the first translator
in the list is shown and the popup looks enabled but it really is not (won’t pop up).

Parameters

dataIn — Pointer to this structure:
––––––––––––––––––––––––

$00 – xferRecPtr – Long-Pointer to Transfer Record
––––––––––––––––––––––––

$04 – customPtr – Long-Pointer to the custom record (NIL for defaults)
––––––––––––––––––––––––

$08 – replyPtr – Long–Pointer to SF new-style reply record
––––––––––––––––––––––––

dataOut — Pointer to this structure:
––––––––––––––––––––––––

$00 recvCount Word-Number of times the request was received
––––––––––––––––––––––––

$02 BFresult Word-Error code
––––––––––––––––––––––––

Errors
$0000 bfNoErr No error
$5301 bfBFBusy Babelfish is busy
$5303 bfNoTransErr No translators available
Memory Mgr, GS/OS, Resource Mgr errors returned unchanged

COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS PAGE 25

Status
$0000 bfContinue No error
$8001 bfUserAbort User clicked Cancel
$8005 bfMemErr Abort; memory error
$80FF bfAbortErr Other error

Notes

NOTE: If customPtr is NIL the default prompt and button name are used.

The customPtr record looks like this:
––––––––––––––––––––––––

$00 – ParmCount – Word–Number of Parameters (2)
––––––––––––––––––––––––

$02 – –
– promptPtr – 1 Long–Pointer to pString of prompt line
– –
––––––––––––––––––––––––

$06 – –
– importButtonPtr – 2 Long–Pointer to pString of “Open” button name
– –
––––––––––––––––––––––––

NOTE: If any field is NIL Babelfish’s default wording is used.

Before calling this routine, the application must make these Transfer Record fields valid:
Status (must be bfContinue)

MiscFlags–ShowErrorsBit (whichever you desire)

DataKinds (one or more bits should be set)

Before calling TrImportOptions, Babelfish also makes these fields valid:
UserID

Before returning, Babelfish also makes these fields valid:
Status

MiscFlags–MatchingBit (set to user’s choice)

MiscFlags–DirectionBit (set to importing)

TransNum (set to the translator the user selected)

PAGE 26 COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS

BFImportThis ($9013)

Description

An application calls BFImportThis when it has a file it wants to import and when it knows which
translator to use.

Babelfish loads the translator4 and tells it to open the given file for importing. If the file is successfully
opened and prepared for importing, control is returned to the application with a good result. Otherwise,
an appropriate error is returned.

Upon a successful return, the application should examine the Kind field to discover what specific Kind
of information will be returned, so it can prepare itself to receive that Kind of data.

Parameters

dataIn — Pointer to this structure:
––––––––––––––––––––––––

$00 – xferRecPtr – Long-Pointer to Transfer Record
––––––––––––––––––––––––

dataOut — Pointer to this structure:
––––––––––––––––––––––––

$00 recvCount Word-Number of times the request was received
––––––––––––––––––––––––

$02 BFresult Word-Error code
––––––––––––––––––––––––

Errors
$0000 bfNoErr No error; ready for BFRead calls
$5301 bfBFBusy Babelfish is busy
$5303 bfNoTransErr No translators available
$5304 bfTransBusy The specified translator is busy
Memory Mgr, GS/OS, Resource Mgr errors returned unchanged

Status
$0000 bfContinue No error
$8001 bfUserAbort User clicked Cancel
$8002 bfBadFileErr Abort; during import it was discovered the file could not be imported by

the translator (either bad structure or turned out not to be the translator’s
file)

$8003 bfReadErr Abort; media error reading from the disk
$80FF bfAbortErr Other error

Notes

Before calling this routine, the application must make these Transfer Record fields valid:
Status (must be bfContinue)

MiscFlags–ShowProgressBit (whichever you desire)

MiscFlags–ShowErrorsBit (whichever you desire)

4 BFImportThis only verifies that the given TransNum exists and is not busy—it does not double-check
to make sure the specified translator can import the specified Kinds of data, and in fact doesn't check
to see if the translator even supports importing.

COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS PAGE 27

DataKinds (one or more bits should be set)

TransNum (already set if BFGetFile or BFChooseTrans was called; otherwise the application must set
this field)

FilePathPtr (application sets this to path of chosen file, as taken from reply record)

FileNamePtr (application sets this to name of chosen file, as taken from reply record)

Before calling TrStartup, Babelfish also makes these fields valid:
MiscFlags–DirectionBit (set to importing)

UserID

Before returning, the translator also makes these fields valid:
Status

DataKinds (sets only one bit to indicate the kind of data that will be returned)

ProgressAction

FullTherm

CurrentTherm (zero)

MsgPtr

DataRecordPtr (either here or during BFRead)

Before returning, Babelfish also makes these fields valid:
Status

PAGE 28 COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS

BFRead ($9014)

Description

The application calls BFRead each time it is ready to accept more data.

Before calling BFRead the application fills in the appropriate fields of the XferRec.

If the application doesn’t instruct Babelfish to abort, Babelfish calls the specific translator’s TrRead
routine.

If no error occurs, the application stores the received data in a temporary location and continues making
BFRead calls.

If Babelfish discovers an error or “done” status, it shuts down the translator and returns the error to the
application. If the application receives an error, any received data should be discarded as invalid; if the
application receives a “done” status the received data is complete and ready to use. In either case, the
application makes no further calls to Babelfish for this import.

Parameters

dataIn — Pointer to this structure:
––––––––––––––––––––––––

$00 – xferRecPtr – Long-Pointer to Transfer Record
––––––––––––––––––––––––

dataOut — Pointer to this structure:
––––––––––––––––––––––––

$00 recvCount Word-Number of times the request was received
––––––––––––––––––––––––

$02 BFresult Word-Error code
––––––––––––––––––––––––

Errors
$5301 bfBFBusy Babelfish is busy

Status
$0000 bfContinue No error
$8001 bfUserAbort User clicked Cancel
$8002 bfBadFileErr Abort; during import it was discovered the file could not be imported by

the translator (either bad structure or turned out not to be the translator’s
file)

$8003 bfReadErr Abort; media error reading from the disk
$8005 bfMemErr Abort; memory error
$80FF bfAbortErr Other error

Notes

Before calling this routine, the application must make these Transfer Record fields valid:
Status (must be bfContinue)

DataRecordPtr (depending upon requirements of the specific data record format)

Before calling TrRead, Babelfish also makes these fields valid:
UserID

Status

COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS PAGE 29

Before returning, the translator also makes these fields valid:
Status

ProgressAction

CurrentTherm

MsgPtr

DataRecordPtr

Before returning, Babelfish also makes these fields valid:
Status

PAGE 30 COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS

BFPutFile ($9015)

Description

If there is at least one non-busy translator capable of exporting the given Kind of data, this routine
presents a custom SFPutFile2 dialog box. The prompt line, default filename, and Export button name
can be specified by the application (the illustration shows the default prompt and button name):

All applicable translators are displayed in alphabetical order. Optionally the user may view Info or
change Options for any listed translator. Once the file location and name are specified, the user clicks
the Export button and control returns to the application. Typically the application would then begin the
export process (see BFExportThis).

Parameters

dataIn — Pointer to this structure:
––––––––––––––––––––––––

$00 – xferRecPtr – Long-Pointer to Transfer Record
––––––––––––––––––––––––

$04 – customPtr – Long-Pointer to the custom record (NIL for defaults)
––––––––––––––––––––––––

$08 – replyPtr – Long–Pointer to SF new-style reply record
––––––––––––––––––––––––

dataOut — Pointer to this structure:
––––––––––––––––––––––––

$00 recvCount Word-Number of times the request was received
––––––––––––––––––––––––

$02 BFresult Word-Error code
––––––––––––––––––––––––

Errors
$0000 bfNoErr No error
$5301 bfBFBusy Babelfish is busy
$5303 bfNoTransErr No translators available
Memory Mgr, GS/OS, Resource Mgr errors returned unchanged

Status
$0000 bfContinue No error
$8001 bfUserAbort User clicked Cancel
$8005 bfMemErr Abort; memory error
$80FF bfAbortErr Other error

COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS PAGE 31

Notes

NOTE: If customPtr is NIL the default prompt, button name, and filename are used.

The customPtr record looks like this:
––––––––––––––––––––––––

$00 – ParmCount – Word–Number of Parameters (3)
––––––––––––––––––––––––

$02 – –
– promptPtr – 1 Long–Pointer to pString of prompt line
– –
––––––––––––––––––––––––

$06 – –
– exportButtonPtr – 2 Long–Pointer to pString of “Export” button name
– –
––––––––––––––––––––––––

$0A – –
– filenamePtr – 3 Long–Pointer to C1Input String of default filename
– –
––––––––––––––––––––––––

NOTE: If any field is NIL Babelfish’s default wording is used.

Before calling this routine, the application must make these Transfer Record fields valid:
Status (must be bfContinue)

MiscFlags–ShowErrorsBit (whichever you desire)

DataKinds (only one bit should be set)

Before calling TrExportOptions, Babelfish also makes these fields valid:
UserID

Before returning, Babelfish also makes these fields valid:
Status

MiscFlags–DirectionBit (set to exporting)

TransNum (set to the translator the user selected)

BFExportThis ($9016)

Description

An application calls BFExportThis when it has a file it wants to export and when it knows which
translator to use.

Babelfish loads the translator5 and tells it to create a file for exporting. If this is successful, control is
returned to the application with a good result. Otherwise, an appropriate error is returned.

5 BFExportThis only verifies that the given TransNum exists and is not busy—it does not double-check
to make sure the specified translator can export the specified Kinds of data, and in fact doesn't check
to see if the translator even supports exporting.

PAGE 32 COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS

Parameters

dataIn — Pointer to this structure:
––––––––––––––––––––––––

$00 – xferRecPtr – Long-Pointer to Transfer Record
––––––––––––––––––––––––

dataOut — Pointer to this structure:
––––––––––––––––––––––––

$00 recvCount Word-Number of times the request was received
––––––––––––––––––––––––

$02 BFresult Word-Error code
––––––––––––––––––––––––

Errors
$0000 bfNoErr No error; ready for BFWrite calls
$5301 bfBFBusy Babelfish is busy
$5303 bfNoTransErr No translators available; don’t attempt any BFWrite calls!
$5304 bfTransBusy The specified translator is busy; don’t attempt any BFWrite calls!
Memory Mgr, GS/OS, Resource Mgr errors returned unchanged

Status
$0000 bfContinue No error
$8001 bfUserAbort User clicked Cancel
$8004 bfWriteErr Abort; media error writing to the disk
$8005 bfMemErr Abort; memory error
$80FF bfAbortErr Other error

Notes

Before calling this routine, the application must make these Transfer Record fields valid:
Status (must be bfContinue)

MiscFlags–ShowProgressBit (whichever you desire)

MiscFlags–ShowErrorsBit (whichever you desire)

DataKinds (only one bit should be set)

TransNum (already set if BFPutFile or BFChooseTrans was called; otherwise the application must set
this field)

ProgressAction

FullTherm

CurrentTherm (zero)

MsgPtr

DataRecordPtr (either here or before BFWrite)

FilePathPtr (set to path of chosen file, as taken from reply record)

FileNamePtr (set to name of chosen file, as taken from reply record)

Before calling TrStartup, Babelfish also makes these fields valid:
MiscFlags–DirectionBit (set to exporting)

UserID

COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS PAGE 33

Before returning, the translator also makes these fields valid:
Status

Before returning, Babelfish also makes these fields valid:
Status

BFWrite ($9017)

Description

The application calls BFWrite each time it has more data to send.

Before calling BFWrite the application fills in the appropriate fields of the XferRec.

If the application doesn’t instruct Babelfish to stop the process (abort, done, etc.), Babelfish calls the
specific translator’s TrWrite routine to write the data to disk.

If no error occurs, the application continues making BFWrite calls until all the data is exported.

If Babelfish discovers an error or “done” status, it shuts down the translator and returns to the
application. If the translator receives an error, the export file should be deleted. When done, the
application makes no further calls to Babelfish for this export.

Parameters

dataIn — Pointer to this structure:
––––––––––––––––––––––––

$00 – xferRecPtr – Long-Pointer to Transfer Record
––––––––––––––––––––––––

dataOut — Pointer to this structure:
––––––––––––––––––––––––

$00 recvCount Word-Number of times the request was received
––––––––––––––––––––––––

$02 BFresult Word-Error code
––––––––––––––––––––––––

Errors
$0000 bfNoErr No error; ready for BFWrite calls
$5301 bfBFBusy Babelfish is busy
Memory Mgr, GS/OS, Resource Mgr errors returned unchanged

Status
$0000 bfContinue No error
$8001 bfUserAbort User clicked Cancel
$8004 bfWriteErr Abort; media error writing to the disk
$8005 bfMemErr Abort; memory error
$80FF bfAbortErr Other error

Notes

Before calling this routine, the application must make these Transfer Record fields valid:
Status (must be bfContinue or bfDone)

ProgressAction

CurrentTherm

PAGE 34 COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS

MsgPtr

DataRecordPtr

Before calling TrWrite, Babelfish also makes these fields valid:
UserID

Status

Before returning, Babelfish also makes these fields valid:
Status

BFProgress ($9018)

Description

This supporting call may be made either by applications when exporting (just before or after calling
BFWrite) or by translators when they are importing (in their TrRead routine). Babelfish uses
information in the Transfer Record to update the progress window.

If the application has suppressed the progress window (presumably to show its own), Babelfish will
rebroadcast this message from the translator, directing the request to the application’s ID number, with a
sendHow value of sendToUserID+stopAfterOne. NOTE: The application may ignore this
message completely and need not return any code as Babelfish ignores all results, including errors—this
is merely a courtesy relay for applications that want to draw their own progress window.

In this case, the application must treat the transfer record exactly as Babelfish would: Use only the
ProgressAction, FullTherm, CurrentTherm, and MsgPtr fields, then clear all the bits in ProgressAction
before returning (see The Transfer Record section for more information on using these fields). Make no
other changes to the Transfer Record.

Parameters

dataIn — Pointer to this structure:
––––––––––––––––––––––––

$00 – xferRecPtr – Long-Pointer to Transfer Record
––––––––––––––––––––––––

dataOut — Pointer to this structure:
––––––––––––––––––––––––

$00 recvCount Word-Number of times the request was received
––––––––––––––––––––––––

$02 BFresult Word-Error code
––––––––––––––––––––––––

Errors
none

Status
no change

Notes

The only fields used in the transfer record are ProgressAction, FullTherm, CurrentTherm, and MsgPtr.
All other fields are ignored and remain unchanged. For details on setting these fields, see the section on
The Transfer Record.

COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS PAGE 35

Advanced Routines
This section describes Babelfish’s advanced routines. With them, an application can perform
translations without ever having a Babelfish window or dialog presented…the “stealth” mode.
NOTE: It is highly recommended that an application use the standard Babelfish calls in order to
present consist interface to the user.

BFMatchKinds ($9021)

Description

This call returns a handle to a list of translator numbers that can import or export the given Kinds of
data. As usual, it is up to the caller to dispose of the handle when finished with it.

Parameters

dataIn — Pointer to this structure:
––––––––––––––––––––––––

$00 – xferRecPtr – Long-Pointer to Transfer Record
––––––––––––––––––––––––

dataOut — Pointer to this structure:
––––––––––––––––––––––––

$00 recvCount Word-Number of times the request was received
––––––––––––––––––––––––

$02 BFresult Word-Error code
––––––––––––––––––––––––
– transListH – Long–Handle to the list of translator numbers
––––––––––––––––––––––––

Errors
$0000 bfNoErr No error
$5301 bfBFBusy Babelfish is busy
$5303 bfNoTransErr No translators available
Memory Mgr, GS/OS, Resource Mgr errors returned unchanged

Status
no change

Notes

The returned transListH is in the following format:
––––––––––––––––––––––––

$00 – transCount – Word–The number of items in transArray
––––––––––––––––––––––––

$02 : transArray : Array–Array of translators
––––––––––––––––––––––––

Each transArray element is formatted as follows:
––––––––––––––––––––––––

$00 – transNum – Word–The matching translator number
––––––––––––––––––––––––

PAGE 36 COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS

Before calling this routine, the application must make these Transfer Record fields valid:
Status (must be bfContinue)

MiscFlags–DirectionBit (whichever you desire)

DataKinds (one or more bits should be set)

BFMatchFile ($9022)

Description

This call returns a handle to a list of translator numbers and rankings of translators that can import the
given file (this call does not apply for exporting). As usual, it is up to the caller to dispose of the handle
when finished with it.

Parameters

dataIn — Pointer to this structure:
––––––––––––––––––––––––

$00 – xferRecPtr – Long-Pointer to Transfer Record
––––––––––––––––––––––––

dataOut — Pointer to this structure:
––––––––––––––––––––––––

$00 recvCount Word-Number of times the request was received
––––––––––––––––––––––––

$02 BFresult Word-Error code
––––––––––––––––––––––––
– transListH – Long–Handle to list of translator numbers and rankings
––––––––––––––––––––––––

Errors
$0000 bfNoErr No error
$5301 bfBFBusy Babelfish is busy
$5303 bfNoTransErr No translators available
Memory Mgr, GS/OS, Resource Mgr errors returned unchanged

Status
no change

Notes

The returned transListH is in the following format:
––––––––––––––––––––––––

$00 – transCount – Word–The number of items in transArray
––––––––––––––––––––––––

$02 : transArray : Array–Array of translators
––––––––––––––––––––––––

NOTE: The translator array is sorted from “best ranking” to “worst ranking”. If two rankings match
then each translator is equally capable; the translator name is used as the tie-breaker.

Each transArray element is formatted as follows:
––––––––––––––––––––––––

$00 – transNum – Word–The matching translator number
––––––––––––––––––––––––

$02 – ranking – Word–The ability of this translator to interpret the file
––––––––––––––––––––––––

COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS PAGE 37

Before calling this routine, the application must make these Transfer Record fields valid:
Status (must be bfContinue)

DataKinds (one or more bits should be set)

FilePathPtr (set to path of chosen file)

FileNamePtr (set to name of chosen file)

BFTransNum2Name ($9023)
This call returns a handle to a particular translator’s name. As usual, it is up to the caller to dispose of
the handle when finished with it.

Parameters

dataIn — Pointer to this structure:
––––––––––––––––––––––––

$00 – xferRecPtr – Long-Pointer to Transfer Record
––––––––––––––––––––––––

dataOut — Pointer to this structure:
––––––––––––––––––––––––

$00 recvCount Word-Number of times the request was received
––––––––––––––––––––––––

$02 BFresult Word-Error code
––––––––––––––––––––––––
– trNameH – Long–Handle to pString containing translator’s name
––––––––––––––––––––––––

Errors
$0000 bfNoErr No error
$5301 bfBFBusy Babelfish is busy
$5303 bfNoTransErr No such translator available
Memory Mgr, GS/OS, Resource Mgr errors returned unchanged

Status
no change

Notes

Before calling this routine, the application must make these Transfer Record fields valid:
Status (must be bfContinue)

TransNum (must be a specific translator)

PAGE 38 COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS

BFTransName2Num ($9024)
This call returns the TransNum of the first non-busy translator that exactly matches a given name
(including case), matches the given Kinds, and supports import/export.

NOTE: The search is case sensitive and the name must match exactly.

Parameters

dataIn — Pointer to this structure:
––––––––––––––––––––––––

$00 – xferRecPtr – Long-Pointer to Transfer Record
––––––––––––––––––––––––

$04 – namePtr – Long-Pointer to the pString containing the translator name
––––––––––––––––––––––––

dataOut — Pointer to this structure:
––––––––––––––––––––––––

$00 recvCount Word-Number of times the request was received
––––––––––––––––––––––––

$02 BFresult Word-Error code
––––––––––––––––––––––––

Errors
$0000 bfNoErr No error
$5301 bfBFBusy Babelfish is busy
$5303 bfNoTransErr No such translator available
Memory Mgr, GS/OS, Resource Mgr errors returned unchanged

Status
no change

Notes

Before calling this routine, the application must make these Transfer Record fields valid:
Status (must be bfContinue)

MiscFlags (DirectionBit)

DataKinds

COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS PAGE 39

BFGetTrData ($9025)
This call returns a handle to information about a particular translator. As usual, it is up to the caller to
dispose of the handle when finished with it.

Parameters

dataIn — Pointer to this structure:
––––––––––––––––––––––––

$00 – xferRecPtr – Long-Pointer to Transfer Record
––––––––––––––––––––––––

dataOut — Pointer to this structure:
––––––––––––––––––––––––

$00 recvCount Word-Number of times the request was received
––––––––––––––––––––––––

$02 BFresult Word-Error code
––––––––––––––––––––––––
– trDataH – Long–Handle to data about the translator
––––––––––––––––––––––––

Errors
$0000 bfNoErr No error
$5301 bfBFBusy Babelfish is busy
$5303 bfNoTransErr No such translator available
Memory Mgr, GS/OS, Resource Mgr errors returned unchanged

Status
no change

Notes

The returned information is in the following format: (see TrData for more details)
––––––––––––––––––––––––

$00 – trRevision – Word–The revision of this structure ($0000)
––––––––––––––––––––––––

$02 – trGeneralFlags – Flag Word–Operating mode capabilities
––––––––––––––––––––––––

$04 – trImportFlags – Flag Word–Importing capabilities and options
––––––––––––––––––––––––

$06 – –
– –
– –
– trImportKinds – 8 Flag Bytes–Flags for the kind of importable data
– –
– –
– –
––––––––––––––––––––––––

$0E – trExportFlags – Flag Word–Exporting capabilities and options
––––––––––––––––––––––––

$10 – –
– –
– –
– trExportKinds – 8 Flag Bytes–Flags for the kind of exportable data
– –
– –
– –
––––––––––––––––––––––––

PAGE 40 COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS

Before calling this routine, the application must make these Transfer Record fields valid:
Status (must be bfContinue)

TransNum (must be a specific translator)

BFShowInfo ($9026)

Description

Given the translator number and whether the application is importing or exporting, BFShowInfo will
display the “Importing Information” or “Exporting Information” for the given translator. The
information is presented by Babelfish in a moveable, modal window. For example:

Parameters

dataIn — Pointer to this structure:
––––––––––––––––––––––––

$00 – xferRecPtr – Long-Pointer to Transfer Record
––––––––––––––––––––––––

dataOut — Pointer to this structure:
––––––––––––––––––––––––

$00 recvCount Word-Number of times the request was received
––––––––––––––––––––––––

$02 BFresult Word-Error code
––––––––––––––––––––––––

Errors
$0000 bfNoErr No error
$5301 bfBFBusy Babelfish is busy
$5303 bfNoTransErr No such translator available
Memory Mgr, GS/OS, Resource Mgr errors returned unchanged

Status
no change

Notes

Before calling this routine, the application must make these Transfer Record fields valid:
Status (must be bfContinue)

MiscFlags–DirectionBit (whichever you desire)

TransNum (must be a specific translator)

COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS PAGE 41

BFDoOptions ($9027)

Description

Given the translator number and whether the application is importing or exporting, BFDoOptions will
display the “Importing Options” or “Exporting Options” for the given translator. Babelfish calls
TrImportOptions or TrExportOptions for the translator to present its dialog to the user. For example:

Parameters

dataIn — Pointer to this structure:
––––––––––––––––––––––––

$00 – xferRecPtr – Long-Pointer to Transfer Record
––––––––––––––––––––––––

dataOut — Pointer to this structure:
––––––––––––––––––––––––

$00 recvCount Word-Number of times the request was received
––––––––––––––––––––––––

$02 BFresult Word-Error code
––––––––––––––––––––––––

Errors
$0000 bfNoErr No error
$5301 bfBFBusy Babelfish is busy
$5303 bfNoTransErr No such translator available
Memory Mgr, GS/OS, Resource Mgr errors returned unchanged

Status
$0000 bfContinue No error
$8001 bfUserAbort Abort; user clicked Cancel
$8005 bfMemErr Abort; memory error

Notes

Before calling this routine, the application must make these Transfer Record fields valid:
Status (must be bfContinue)

MiscFlags–DirectionBit (whichever you desire)

TransNum (must be a specific translator)

Before calling TrImportOptions or TrExportOptions, Babelfish also makes these fields valid:
UserID

PAGE 42 COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS

BFLoadData ($9028)

Description

Important: This call can be made only be translators!

This call returns a handle containing preferences for the calling translator. If the handle is null (or if an
error is returned) then no preferences were loaded and the translator should use its default settings.

Parameters

dataIn — Pointer to this structure:
––––––––––––––––––––––––

$00 – userID – Word-Translator’s user ID
––––––––––––––––––––––––

dataOut — Pointer to this structure:
––––––––––––––––––––––––

$00 recvCount Word-Number of times the request was received
––––––––––––––––––––––––

$02 BFresult Word-Error code
––––––––––––––––––––––––

$04 – dataHandle – Long-Handle containing the data
––––––––––––––––––––––––

Errors
$0000 bfNoErr No error
$5307 bfBadUserID You called a routine you weren’t supposed to
GS/OS errors returned unchanged

Notes

COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS PAGE 43

BFSaveData ($9029)

Description

Important: This call can be made only be translators!

This call saves preferences for the calling translator.

Parameters

dataIn — Pointer to this structure:
––––––––––––––––––––––––

$00 – UserID – Word-Translator’s user ID
––––––––––––––––––––––––

$02 – dataHandle – Long-Handle containing the data
––––––––––––––––––––––––

dataOut — Pointer to this structure:
––––––––––––––––––––––––

$00 recvCount Word-Number of times the request was received
––––––––––––––––––––––––

$02 BFresult Word-Error code
––––––––––––––––––––––––

Errors
$0000 bfNoErr No error
$5307 bfBadUserID You called a routine you weren’t supposed to
GS/OS errors returned unchanged

Notes

BFLoadSupport ($902A)

Description

Translators and applications that wish to use common support routines will first need to load them.
This Babelfish call will simplify that task.

When Babelfish receives this call, it loads the named file from the Support folder, calls its SrInit
function, and returns the memory ID of the file. If the file has already been loaded by another caller,
Babelfish increments an internal counter, skips the load and initialization, and just returns the memory
ID.

Translators and applications may then send requests to the support file using either sendToName or
sendToUserID (using sendToUserID is recommended for efficiency). The first message sent to the
support file must be to its SrStartup function and the last message must be to its SrShutdown function
(see the Translation Support Routines section for more information).

Unless this call is unsuccessful, it must be balanced with a BFUnloadSupport call.

Parameters

dataIn — Pointer to this structure:
––––––––––––––––––––––––

PAGE 44 COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS

$00 – namePtr – Long-Pointer to Pstring containing the file’s request name
––––––––––––––––––––––––

dataOut — Pointer to this structure:
––––––––––––––––––––––––

$00 recvCount Word-Number of times the request was received
––––––––––––––––––––––––

$02 BFresult Word-Error code
––––––––––––––––––––––––

$04 SupportID Word-Support file’s ID number
––––––––––––––––––––––––

Errors
$0000 bfNoErr No error
$5306 bfSupportNotFound Support routine was not found
GS/OS errors returned unchanged

Notes

BFUnloadSupport ($902B)

Description

When the translator or application is finished with a support file (most likely as part of TrShutdown), it
must release the support file. Translators and applications must balance each successful
BFLoadSupport call with a BFUnloadSupport call.

Babelfish keeps an internal counter of the number of callers that requested the support file to be loaded.
When the last caller requests the support file to be unloaded, Babelfish removes the support file’s
message handler and disposes of its memory. It is imperative that the support file user call the
SrShutdown function prior to unloading it.

Parameters

dataIn — Pointer to this structure:
––––––––––––––––––––––––

$00 – namePtr – Long-Pointer to Pstring containing the file’s request name
––––––––––––––––––––––––

dataOut — Pointer to this structure:
––––––––––––––––––––––––

$00 recvCount Word-Number of times the request was received
––––––––––––––––––––––––

$02 BFresult Word-Error code
––––––––––––––––––––––––

Errors
$0000 bfNoErr No error
GS/OS errors returned unchanged

Notes

COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS PAGE 45

The Translator Format
Translators are located in the *:System:SHS.Babelfish folder. The filetype is $BE (Translator) and the
auxtype is $4003 (Babelfish translator). NOTE: Users can “inactivate” a translator by checking a box
in the Finder, which sets the high bit of the auxiliary type. Babelfish respects the users wishes and
ignores inactive files.

When the translator receives control, the direct page and data bank are not set. The translator must set
these registers as needed, but need not restore them upon return. Direct page space is not provided for
the translator’s use; the translator may use the stack or request and maintain its own space from the
Memory Manager.

Babelfish loads a translator from disk, assigns a user ID, and calls Resource Startup at BFImportThis or
BFExportThis time (before TrInit and TrStartUp are called by Babelfish). This makes the translators
independant resource applications, which they remain throughout the Read/Write life cycle. When the
Read/Write process is complete (or terminated due to an error), Babelfish calls Resource Shutdown on
the translator and completely purges the translator from memory. NOTE: This does not apply to the
TrFilter routine; it does apply to the ExportOptions routine.

Communication with the translator’s main functions is by IPC. Babelfish will fill in dataIn and call
SendRequest. The translator’s message handler should route the call according to the request code to
one of its function handlers. When the translator completes its action, it should ensure that the necessary
fields in the Transfer Record are valid and that the TRresult code is appropriate (Babelfish initializes it
to zero).

Babelfish communicates with translators by calling SendRequest with the proper request code, directing
the request to the translator’s ID number, with a sendHow value of sendToUserID +
stopAfterOne.

The translator’s UserID is provided in the XferRec and is to be used for all memory requests (aux IDs
may also be used). You cannot call DisposeAll on the UserID, but you can on your Aux IDs.

When a translator function is called, the translator’s resource fork is open “read only” (the only changes
that a translator needs to save are user options, and they must be saved in a separate preference file).

The translator’s resource fork is set as the current resource file, and the search path includes only it and
System Resources (which means that the translator will not be able to interfere with other resources of
Babelfish, the application, or any other translator). If necessary, a translator may load and manage its
own resources, provided they are found in the current search path.

Translator Structure

Translators consist of several required and optional resources. The data fork is not used.

NOTE: The number in parentheses is the required resource ID number.

Translators must contain all of these resources:
Name Type(ID) Description
TrVersion rVersion(1) This resource is used by the Finder during Get Info.

The version number and name are also used by
Babelfish when showing the About dialog. See GS
Tech Note #76.

TrData $5472(1) A custom resource collection of detailed info about the
translator.

PAGE 46 COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS

TrInit rCodeResource(1) Code that installs the message handler and function
router.

All translators must contain the following functions:
Name Type(ID) Description
TrStartUp required Code that initializes buffers, variables, etc. in

preparation to read or write a file.
TrShutDown required Code that reverses everything done in TrStartUp.

The following function is required if the translator supports importing:
Name Type(ID) Description
TrRead optional Code that performs importing.

The following function is required if the translator supports exporting:
Name Type(ID) Description
TrWrite optional Code that performs exporting.

The following resources are required if the translator supports importing:
Name Type(ID) Description
TrFilter rCodeResource(4) Code that is structured like a new-style SF filter

procedure for use during SFPGetFile2. See also GS
Tech Note #86.

TrImportOptions rCodeResource(2) Code that presents an “Options” dialog to set importing
options.

TrImportInfo rText(2) Text that describes the importing options (if any) and
contact information.

The following resources are required if the translator supports exporting:
Name Type(ID) Description
TrExportOptions rCodeResource(3) Code that presents an “Options” dialog to set exporting

options.
TrExportInfo rText(3) Text that describes the exporting options (if any) and

contact information.

The following resources are optional (but recommended):
Name Type(ID) Description
TrAbout rComment(1) This resource is used by the Finder during Get Info (on

the Comment page). See GS Tech Note #76.
TrCantLaunch rComment(2) This resource is used by the System 6 Finder when it

cannot launch a file. See “Programmer’s Reference for
System 6.0”, pp 364 & 429.

TrImportInfoStyle rStyleBlock(2) Optional TE Style block for the TrImportInfo rText(2)
resource. If this exists, TrImportInfo will be stylized;
otherwise it appears in Shaston 8.

TrExportInfoStyle rStyleBlock(3) Optional TE Style block for the TrExportInfo rText(3)
resource. If this exists, TrExportInfo will be stylized;
otherwise it appears in Shaston 8.

TrVersion
Resource Type: rVersion ($8029) Resource ID: $00000001 Attributes: none

This resource contains a long word version number which is used internally by Babelfish.

It also contains the translator name which is displayed in the “select translator” window. NOTE: The
list which displays the translator names is limited in width so you should test to be sure the entire name
can be displayed without truncation.

COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS PAGE 47

TrData
Resource Type: rData ($5472) Resource ID: $00000001 Attributes: none

This resource contains detailed information about the translator and its capabilities.

The following information is stored in the resource:

Revision Word Used by Babelfish to verify future compatibility. This
revision is $0000. If we add new fields to this structure
in the future, Babelfish will use this field to determine
whether the translator supports the new features.

GeneralFlags FlagWord Bit0: Can operate in 320 mode
Bit1: Can operate in 640 mode
Bits2-15: Reserved; must be zero

ImportFlags Flag Word Bit0: Translator can import
Bit1: Has importing options
Bits2-15: Reserved; must be zero

ImportKinds 8 Flag Bytes The Kinds of data this translator can import
ExportFlags Flag Word Bit0: Translator can export

Bit1: Has exporting options
Bits2-15: Reserved; must be zero

ExportKinds 8 Flag Bytes The Kinds of data this translator can export

TrAbout
Resource Type: rComment ($802A) Resource ID: $00000001 Attributes: none

This “Finder Info” resource contains general information about the translator (what it converts, whether
or not it supports importing, exporting, or both, and so on).

For example, the text might be something like this:

This translator reads and writes ASCII text files. It can also be used to extract text from non-
text files.

Copyright 1991-1998 by Seven Hills Software Corporation

This text is shown by the Finder (on the Comments page) when the user selects “Icon Info” for the
translator file. It should be formatted to fit the Comments page space.

TrCantLaunch
Resource Type: rComment ($802A) Resource ID: $00000002 Attributes: none

This resource contains a standard message that is displayed if the user tries to open a translator from the
Finder. The suggested text is:

This is a translator and can’t be launched. It is a Seven Hills Software “Babelfish” extension
that reads/writes a special data format. To use it, put it in the “*:System:SHS.Babelfish”
folder and open an application that uses Babelfish.

PAGE 48 COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS

TrImportOptions
Resource Type: rCodeResource ($8017) Resource ID: $00000002 Attributes: locked, convert

Description

This code resource presents a dialog box in which the user sets importing options. If there are no import
options this resource does not exist (and bit 1 of ImportFlags is clear).

For consistency with Babelfish windows and all translators from Seven Hills, the translator should
present its options in a moveable modal window. The title “Importing Options” should be used as the
window’s title, and the translator name and version number (as specified in the TrVersion resource)
should be displayed. See “Overview—Using Babelfish” for examples.

At the bottom of the dialog should be a “Cancel” and a default “Accept” button. If the user hits
“Cancel” then no changes are made; if the user hits “Accept” then the options are saved by Babelfish.
NOTE: The Accept button should not be named “Import” or “Open” because the user is not
“importing” or “opening” the translator or its options…the user is simply “accepting” the displayed
options.

Parameters

Stack before call
Previous contents

––––––––––––––––––––––––
– xferRecPtr – Long–Pointer to Transfer Record
––––––––––––––––––––––––

<––SP

Stack after call
Previous contents

––––––––––––––––––––––––
<––SP

Errors
$0000 bfNoErr No error
Memory Mgr, GS/OS, Resource Mgr errors returned unchanged

Status
$0000 bfContinue No error
$8005 bfMemErr Abort; memory error
$80FF bfAbortErr Other error

Logic
Prior to calling displaying the dialog, the translator should call BFLoadData to request any

previously-saved import options from a preference file. If there is any error in loading the
file, the translator should set up the dialog using default choices.

The preference file contains data previously stored by the translator, and that data should be used
to set up the options dialog. The format of this data is entirely up to the translator. It is
recommended that the translator include some signature or revision indicator that it can use to
validate the data (if the validation fails, use the default settings).

If the user changes any settings and clicks Accept, the translator should make the necessary changes
in the data and call BFSaveData to save a new preference file to disk.

Helpful Illustrations/Examples

COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS PAGE 49

TrImportInfo
Resource Type: rText ($8016) Resource ID: $00000002 Attributes: none
Optional Resource: rStyleBlock ($8012) Resource ID: $00000002 Attributes: none

This text is displayed when the user selects the Info button in any translator-selection dialog. It gives
general information about the translator, and specifically describes the importing options (if any).
NOTE: The translator’s name and version are displayed by Babelfish; to avoid potential conflicts the
version number should not be included in the text itself.

The text is displayed in a TextEdit control and is scrollable. If the corresponding rStyleBlock resource
exists the text is styled; otherwise the text appears in Shaston 8.

One example of a translator that does not have any importing options…

This translator supports importing, but no importing options are required.

Technical support and information about new versions of this translator can be obtained by
contacting:

Seven Hills Solutions Specialists, 1254 Ocala Road, Tallahassee, FL 32304.
Technical help: support@sevenhills.com
Everything else: sales@sevenhills.com

Copyright 1991-1998 by Seven Hills Solutions Specialists

One example of a translator that does have importing options…

You can specify the following options before importing:

CONVERT LINES TO PARAGRAPHS
Blah blah blah blah blah

REPLACE CR/LF WITH JUST CR
Blah blah blah blah blah

...and so on...

• • • • • • • • • •

Technical support and information about new versions of this translator can be obtained by
contacting:

Seven Hills Solutions Specialists, 1254 Ocala Road, Tallahassee, FL 32304.
Technical help: support@sevenhills.com
Everything else: sales@sevenhills.com

Copyright 1991-1998 by Seven Hills Solutions Specialists

PAGE 50 COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS

TrFilter
Resource Type: rCodeResource ($8017) Resource ID: $00000004 Attributes: locked, convert

NOTE: This code resource should be as small as possible because is loaded into memory when
Babelfish is started and is not released until Babelfish is shut down.

Description

When Babelfish must decide which translators can handle importing a particular file, it calls the filter
procedure for each of the non-busy translators that support importing the given Kind of data. The
translator’s filter procedure determines whether it can deal with the file and returns a rating of its ability.
TIP: If the translator supports HFS or AppleShare files, the Type and Creator may be found in the
OptionsList.

There are three basic responses from the filter procedure:

• No($00) means the translator cannot import this file.

• GenericYes($01 or $02) means the translator can import the file, but it’s not a specific translator
(e.g. a text HexDump or graphic Histogram translator would fall into this “generic” category). An
$01 match is very generic (histogram, hexdump, ascii characters from a BIN file); an $02 match is
slightly more useful (e.g. ascii characters from a TXT file).

• SpecificYes($03 or $04) means you’re a translator designed to import a specific kind of file (not
generic), and the file you’re looking at appears to be one of yours. An $03 match means the file is
probably yours, but not positive (e.g. single hires translator looking at a properly-sized BIN file). An
$04 match means you are reasonably positive the file is yours (e.g. an SHR translator looking at an
Apple Preferred file/auxtype).

Two-Stage Filters

The filter code must be very quick because it is called frequently by Babelfish. That’s easy if your file
has a specific file/auxtype, but what about “fuzzy” files that have no specific file/auxtype? In order to
optimize the filter, yet still provide a high degree of confidence in your answer, Babelfish supports an
optional “two-stage” filter.

When TrFilter is called you should quickly examine information immediately available to you (file,
auxtype, size, etc.). If you can determine that you definitely cannot import this file then return $00. If
you determine that you definitely can import this file then return $04.

If the file is a “maybe” then you would normally return an $01, $02 or $03 ranking and be done with it
(as described above). However, if closer examination of the file would tell you for sure whether the file
is supported, then you can implement a two-stage filter. When returning an $01, $02 or $03 ranking,
also set bit 15 of the ranking word. Important: Never return an $00 or $04 ranking with bit 15 set!

By setting bit 15 you are telling Babelfish that you can take extra steps to determine if the file really is
yours. If Babelfish runs a particular file through all the available filters and finds one that can definitely
handle the file then your filter will not be called again. But if no other filters can positively handle the
file, Babelfish will call your TrFilter routine a second time.

The second time TrFilter is called, bit 31 of the Directory Entry Pointer will be set. This is your cue to
perform a closer examination of the file. That examination should then result in an $00 or $04 ranking
(and bit 15 must be clear). NOTE: It won’t harm Babelfish if you return an $01, $02 or $03 ranking at
this second stage, but if the second stage cannot determine between $00 and $04 then you should not use
a two-stage filter!

Important points:

COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS PAGE 51

If your filter is not a two-stage filter you must never return with bit 15 of the ranking word set! Your
filter can quickly examine the information in memory (file/auxtype/filesize, etc.) and return a ranking.

If your filter is a two-stage filter you should first check bit 31 of the Directory Entry Pointer. If it is not
set then you’re being called the first time; quickly examine the information in memory and return a
ranking (with bit 15 set if you think you can be more precise for this file). If bit 31 of the Directory
Entry Pointer is set then you are being called the second time; skip the initial checks (you know this file
already passed them) and immediately perform the detailed checks.

The “raw sound” data format is “any binary file that contains no byte values larger than $7F”. While it is
possible to write a two-stage filter with the second stage scanning through the entire file to verify there
were no values larger than $7F, that should not be done because it would be painfully slow for the user!

The “Applied Engineering Sound” sound data format is also “any binary file that contains no byte values
larger than $7F”…but it also has a header in the file that contains 4 bytes that are required to be certain
values. In this case a two-stage filter makes sense; the second stage would load those 4 bytes into
memory and compare them against the values they should be. No match returns $0000; a match returns
$0004 (a binary file with those 4 exact bytes is highly likely to be an AE Sound).

PAGE 52 COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS

Parameters

Stack before call
Previous contents

––––––––––––––––––––––––
Space Word–Space for result

––––––––––––––––––––––––
– GetDirEntryRec – Long–Pointer to GetDirEntry record
––––––––––––––––––––––––

<––SP

Stack after call
Previous contents

––––––––––––––––––––––––
Rating Word–Rating between $00-$04 of import ability

––––––––––––––––––––––––
<––SP

Errors

None

Logic

Helpful Illustrations/Examples

One-Stage Filters

An “AppleWorks Classic” filter can immediately respond $00 or $04 based on the file/auxtype.

An “ASCII Text” filter can immediately respond $03 for TEXT files and $02 for other files.

Two-Stage Filters

On the first pass, a “Sound Resource” filter can:

• immediately respond $0000 if the file does not have a resource fork

• immediately respond $0004 if the file/auxtype indicates it is a “sound resource” file

• immediately respond $8002 if the file has a resource fork but is not a “sound resource” file

On the second pass, a “Sound Resource” filter can:

• immediately open the resource fork of the file (it knows it has one because it passed the first stage
filter) and ask the Resource Manager if there are any “rSound” resources in this file. Based on that
answer the filter can return $0000 or $0004.

COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS PAGE 53

TrExportOptions
Resource Type: rCodeResource ($8017) Resource ID: $00000003 Attributes: locked, convert

Description

This code resource presents a dialog box in which the user sets exporting options. If there are no export
options this resource does not exist (and bit 1 of ExportFlags is clear).

For consistency with Babelfish windows and all translators from Seven Hills, the translator should
present its options in a moveable modal window. The title “Exporting Options” should be used as the
window’s title, and the translator name and version number (as specified in the TrVersion resource)
should be displayed. See “Overview-Using Babelfish” for examples.

At the bottom of the dialog should be a “Cancel” and a default “Accept” button. If the user hits
“Cancel” then no changes are made; if the user hits “Accept” then the options are saved by Babelfish.
NOTE: The Accept button should not be named “Export” or “Save” because the user is not
“exporting” or “saving” the translator or its options…the user is simply “accepting” the displayed
options.

Parameters

Stack before call
Previous contents

––––––––––––––––––––––––
– xferRecPtr – Long–Pointer to Transfer Record
––––––––––––––––––––––––

<––SP

Stack after call
Previous contents

––––––––––––––––––––––––
<––SP

Errors
$0000 bfNoErr No error
Memory Mgr, GS/OS, Resource Mgr errors returned unchanged

Status
$0000 bfContinue No error
$8005 bfMemErr Abort; memory error
$80FF bfAbortErr Other error

Logic
Prior to calling displaying the dialog, the translator should call BFLoadData to request any

previously-saved export options from a preference file. If there is any error in loading the
file, the translator should set up the dialog using default choices.

The preference file contains data previously stored by the translator, and that data should be used
to set up the options dialog. The format of this data is entirely up to the translator. It is
recommended that the translator include some signature or revision indicator that it can use to
validate the data (if the validation fails, use the default settings).

If the user changes any settings and clicks Accept, the translator should make the necessary changes
in the data and call BFSaveData to save a new preference file to disk.

Helpful Illustrations/Examples

PAGE 54 COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS

TrExportInfo
Resource Type: rText ($8016) Resource ID: $00000003 Attributes: none
Optional Resource: rStyleBlock ($8012) Resource ID: $00000003 Attributes: none

This text is displayed when the user selects the Info button in any translator-selection dialog. It gives
general information about the translator, and specifically describes the exporting options (if any).
NOTE: The translator’s name and version are displayed by Babelfish; to avoid potential conflicts the
version number should not be included in the text itself.

The text is displayed in a TextEdit control and is scrollable. If the corresponding rStyleBlock resource
exists the text is styled; otherwise the text appears in Shaston 8.

One example of a translator that does not have any exporting options…

This translator supports exporting, but no exporting options are required.

Technical support and information about new versions of this translator can be obtained by
contacting:

Seven Hills Solutions Specialists, 1254 Ocala Road, Tallahassee, FL 32304.
Technical help: support@sevenhills.com
Everything else: sales@sevenhills.com

Copyright 1991-1998 by Seven Hills Solutions Specialists

One example of a translator that does have exporting options…

You can specify the following options before exporting:

CONVERT PARAGRAPHS TO LINES OF __ CHARACTERS
Blah blah blah blah blah

REPLACE CR/ WITH CR/LR
Blah blah blah blah blah

...and so on...

• • • • • • • • • •

Technical support and information about new versions of this translator can be obtained by
contacting:

Seven Hills Solutions Specialists, 1254 Ocala Road, Tallahassee, FL 32304.
Technical help: support@sevenhills.com
Everything else: sales@sevenhills.com

Copyright 1991-1998 by Seven Hills Solutions Specialists

COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS PAGE 55

TrInit
Resource Type: rCodeResource ($8017) Resource ID: $00000001 Attributes: locked, convert

Description

When Babelfish prepares to use a translator, it calls the translator’s TrInit function. The purpose of
TrInit is to afford the translator an opportunity to install its message handler.

Parameters

The stack is not affected by this call. There are no input or output parameters.

Errors
none

Notes

The format of the translator’s request name is “Babelfish~Your Company Name~Translator
Name~MemoryID” (where MemoryID is the memory ID returned by _MMStartup; this lets your
translator be duplicated numerous times and have each copy be recognized as a unique translator).

Translators may structure the handler any way they see fit; however, the recommended method would be
to include the required and optional functions in this code resource. Babelfish leaves this code locked
and fixed throughout the entire translation process.

Logic

PAGE 56 COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS

TrStartUp ($9101)

Description

This code initializes buffers, variables, etc. in preparation to read or write the given file. If TrStartup
opens a resource file, the file will remain open until after TrShutdown is called. If the translator does not
close the resource file, _ResourceShutdown will close it when the translator is “closed”.

NOTE: If you return an error from TrStartUp you will not be called again! This means if you going to
return an error you must dispose of any memory you allocated, etc., before returning from TrStartUp. If
TrStartUp is successful, TrShutDown will always get called (even if an error occurs during TrRead or
TrWrite).

Parameters

dataIn — Pointer to this structure:
––––––––––––––––––––––––

$00 – xferRecPtr – Long-Pointer to Transfer Record
––––––––––––––––––––––––

dataOut — Pointer to this structure:
––––––––––––––––––––––––

$00 recvCount Word-Number of times the request was received
––––––––––––––––––––––––

$02 TRresult Word-Error code
––––––––––––––––––––––––

Errors
$0000 bfNoErr No error
Memory Mgr, GS/OS, Resource Mgr errors returned unchanged

Status
$0000 bfContinue No error
$8002 bfBadFileErr Abort; structure not as expected
$8003 bfReadErr Abort; media error reading from the disk
$8004 bfWriteErr Abort; media error writing to the disk
$8005 bfMemErr Abort; memory error
$80FF bfAbortErr Other error

Logic
By examining the DirectionBit of the BFMiscFlags you can determine whether you’re supposed to

prepare for importing or exporting.
If you need/want a direct page you must acquire and maintain it yourself (and release it in

TrShutDown).

IF Importing
Open the given file for importing (read-only recommended)
Determine the one specific Kind of data you will be returning and store that information in the

Kinds field. This step is easy if you only support one kind of data, but what if more than one
Kind is specified? In that case, use the best format for the particular file that’s being
imported. For example, if the Kinds record says “640 screen graphic” “320 screen graphic” and
“QuickDraw Picture” then the application said it could import any of those kinds of graphics (AND
your ImportKinds said that you could import at least one of those Kinds). At this point you
should examine the file to determine which is best…if it’s a 320 screen graphic then return that
as the Kind; if it’s a QuickDraw Picture file, then return that as the Kind.

Determine the value that will represent a full thermometer and store it in the “FullTherm” field of
the XferRec (see the “Standard Data Format Definitions” section for further guidelines).

Establish and initialize the data record for this Kind of data.

COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS PAGE 57

You could also establish your data buffer (or release and allocate it during each TrRead call).
Whether you establish your data buffer now or during TrRead, you must remember to release it in
the TrShutDown routine!

IF Exporting
Create and Open the given file for exporting (write-only recommended). By examining the Kinds

record you will know the specific Kind of data you will be receiving.

Helpful Illustrations/Examples

TrShutDown ($9102)

Description

This code reverses everything done in TrStartUp (e.g. closes the file, releases buffers, etc.). All memory
acquired by the translator must be disposed of during (or before) TrShutDown. NOTE: If the TrStartUp
call was successful, Babelfish will balance with a call to TrShutDown, even if an error occurs during
TrRead or TrWrite.

NOTE: Babelfish will remove the translator’s message handler and close its resource fork immediately
after this call completes, regardless of the error or status returned.

Parameters

dataIn — Pointer to this structure:
––––––––––––––––––––––––

$00 – xferRecPtr – Long-Pointer to Transfer Record
––––––––––––––––––––––––

dataOut — Pointer to this structure:
––––––––––––––––––––––––

$00 recvCount Word-Number of times the request was received
––––––––––––––––––––––––

$02 TRresult Word-Error code
––––––––––––––––––––––––

Errors
None

Status
$8000 bfDone Successful import/export completion
$8004 bfWriteErr Abort; media error writing to the disk
$8005 bfMemErr Abort; memory error
$80FF bfAbortErr Other error

Logic
If you acquired a direct page you must release it.

IF Importing
Close the file
Release your data buffer
Release the data record

IF Exporting
Close the file
If Status is NOT “bfDone” then delete the destination file (because the transfer was aborted due to

an error, or because the user requested the export be cancelled).

PAGE 58 COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS

Helpful Illustrations/Examples

TrRead ($9103)

Description

This code reads some or all of the given file, converts the contents into one of the standard data formats,
then returns that information to Babelfish.

Instead of importing an entire file at once, data is often divided into smaller, more manageable sizes (see
“Standard Data Format Definitions” for further information). To import an entire file an application
repeatedly calls the BFRead routine (which in turn calls TrRead) until “bfDone” is returned.

When TrRead is called the translator reads some or all of the file into memory. It then fills in the
XferRec fields appropriately (including the DataRecordPtr) and returns. NOTE: If the Status is
“bfDone” then the DataRecordPtr is not valid when the application gets control back! Therefore, if this
is the last chunk of data you should leave the Status as “bfContinue” (with a full thermometer) and on
the next TrRead call you can immediately return a “bfDone” Status to shut down everything.

Translators may use additional support routines after calling BFLoadSupport and SrStartup. When they
are finished with the support routine, they must call SrShutdown and BFUnloadSupport.

Translators should call BFProgress to update the progress window often. For import translators, user
messages can be used to provide more information to the user about the importing progress. For
example, a “Super Hi-Res Graphics” translator that can import Unpacked Screens, Packed Screens,
Apple Preferred Files, etc., might want to state the exact kind of file being imported. And it could even
update the progress during the importation:

Apple Preferred File Format
Reading header…

Apple Preferred File Format
Calculating palette information…

Apple Preferred File Format
Importing…

Parameters

dataIn — Pointer to this structure:
––––––––––––––––––––––––

$00 – xferRecPtr – Long-Pointer to Transfer Record
––––––––––––––––––––––––

dataOut — Pointer to this structure:
––––––––––––––––––––––––

$00 recvCount Word-Number of times the request was received
––––––––––––––––––––––––

$02 TRresult Word-Error code
––––––––––––––––––––––––

Errors
$0000 bfNoErr No error
$5305 bfNotSupported Translator function not supported
Memory Mgr, GS/OS, Resource Mgr errors returned unchanged

COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS PAGE 59

Status
$0000 bfContinue No error
$8002 bfBadFileErr Abort; structure not as expected
$8003 bfReadErr Abort; media error reading from the disk
$8005 bfMemErr Abort; memory error
$80FF bfAbortErr Other error

Logic

Helpful Illustrations/Examples

TrWrite ($9104)

Description

This code accepts data in one of our standard data formats, converts it into its specific format, then saves
it to disk.

Instead of exporting an entire file at once, data is often divided into smaller, more manageable sizes (see
“Standard Data Format Definitions” for further information). To export an entire file an application
repeatedly calls the BFWrite routine (which in turn calls TrWrite).

Translators may use additional support routines after calling BFLoadSupport and SrStartup. When they
are finished with the support routine, they must call SrShutdown and BFUnloadSupport.

When the application is finished sending data, the translator’s TrShutDown routine will be called.

Parameters

dataIn — Pointer to this structure:
––––––––––––––––––––––––

$00 – xferRecPtr – Long-Pointer to Transfer Record
––––––––––––––––––––––––

dataOut — Pointer to this structure:
––––––––––––––––––––––––

$00 recvCount Word-Number of times the request was received
––––––––––––––––––––––––

$02 TRresult Word-Error code
––––––––––––––––––––––––

Errors
$0000 bfNoErr No error
$5305 bfNotSupported Translator function not supported
Memory Mgr, GS/OS, Resource Mgr errors returned unchanged

Status
$0000 bfContinue No error
$8004 bfWriteErr Abort; media error writing to the disk
$8005 bfMemErr Abort; memory error
$80FF bfAbortErr Other error

Logic

PAGE 60 COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS

Helpful Illustrations/Examples

COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS PAGE 61

Babelfish Support
Routines

Support Routines can be anything, but they are intended to be routines that many translators and/or
applications will find useful. For example, instead of twenty translators having pages of code to load a
Macintosh resource, that the code can exist once as a support routine. And, like system tools, if a
support call is ever rewritten to be better, stronger, or faster, all the translators and applications that use
the support routine instantly get better with no recoding!

A translator or application follows these steps in order to use a particular support routine:

1) Call BFLoadSupport

2) Call SrStartUp (only if the support routine was loaded)

3) Call SrShutDown (don’t forget! but only if SrStartUp did not return an error!)

4) Call BFUnloadSupport (don’t forget! but only if BFLoadSupport did not return an error!)

Support Routine File Format
Support routines are located in the *:System:SHS.Babelfish folder. The filetype is $BC (Generic load
file) and the auxtype is $4014 (Babelfish support routine). NOTE: Users can “inactivate” a support
routine by checking a box in the Finder, which sets the high bit of the auxiliary type. Babelfish respects
the users wishes and ignores inactive files.

When the support routine receives control, the direct page and data bank are not set. The support routine
must set these registers as needed, and must restore them upon return. Direct page space is not provided
for the support routine’s use; the support routine may use the stack or request and maintain its own space
from the Memory Manager.

Communication with the support routine’s functions is by IPC. An application calls SendRequest with
the proper request code, directing the request to the support routine’s ID number, with a sendHow value
of sendToUserID + stopAfterOne. The support routine’s message handler should route the call
according to the request code to one of its function handlers.

Support File Structure

Support files are structured similar to translators. They consist of several required and optional
resources. The data fork may be used at the author’s discretion.

Specific message numbers are at the discretion of the author, but shall be in the range of $B000-BFFF.

NOTE: The number in parentheses is the required resource ID number.

Support files must contain all of these resources:
Name Type(ID) Description
SrVersion rVersion(1) This resource is used by the Finder during Get Info.

See GS Tech Note #76.

PAGE 62 COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS

SrInit rCodeResource(1) Code that installs the message handler and function
router.

SrRequestName rPString(1) The request name used to send messages.

All support files must contain the following functions:
Name Type(ID) Description
SrStartUp Code that initializes the support routines.
SrShutDown Code that terminates and releases memory.
SrGetVersion Code that returns the version number.

The following resources are optional (but recommended):
Name Type(ID) Description
SrAbout rComment(1) This resource is used by the Finder during Get Info (on

the Comment page). See GS Tech Note #76.
SrCantLaunch rComment(2) This resource is used by the System 6 Finder when it

cannot launch a file. See “Programmer’s Reference for
System 6.0”, pp 364 & 429.

SrVersion
Resource Type: rVersion ($8029) Resource ID: $00000001 Attributes: none

This resource contains a long word version number.

SrAbout
Resource Type: rComment ($802A) Resource ID: $00000001 Attributes: none

This “Finder Info” resource contains general information about the support file.

SrCantLaunch
Resource Type: rComment ($802A) Resource ID: $00000002 Attributes: none

This resource contains a standard message that is displayed if the user tries to open a support file from
the Finder. The suggested text is:

This is a support file and can’t be launched. It is a Seven Hills Solutions Specialists
“Babelfish” extension. To use it, put it in the “*:System:SHS.Babelfish” folder and open an
application that uses Babelfish.

SrRequestName
Resource Type: rPString ($8006) Resource ID: $00000001 Attributes: none

This is the request name of the support file as it may be used with SendRequest.

SrInit
Resource Type: rCodeResource ($8017) Resource ID: $00000001 Attributes: locked, convert

Description

The sole function of SrInit should be to install the support routine’s IPC message handler. SrInit is only
be called once (if an additional translator calls BFLoadSupport and the support routine is already loaded,
SrInit is not called a second time).

COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS PAGE 63

Parameters

The stack is not affected by this call. There are no input or output parameters.

Errors
Tool Locator errors returned unchanged.

Notes

The format of the support file’s request name is “Babelfish Support~Your Company Name~Support File
Name~”.

Support files may structure the handler any way they see fit; however, the recommended method would
be to include the required functions in this code resource. Babelfish leaves this code locked and fixed
throughout the entire translation process (until BFUnloadSupport). If you have large data tables or
lengthy code, you are encouraged to load it separately as it is needed.

Babelfish will call SrInit with a JSL in full native mode. SrInit must save and restore the data bank and
direct page registers. SrInit must return via RTL with the accumulator and the carry affected by the
_AcceptRequests call. If SrInit returns an error, Babelfish will unload and dispose of the SrInit
memory.

Logic

SrStartUp ($Bxxx)

Description

This code initializes the support routines for use. Its actions, parameters, and errors are up to the author.
If the optional functions are not already in memory, they should be loaded now.

Additional code or data may be stored in the support file’s resource or data fork. When loading
resources, care must be taken to leave the environment unchanged. In other words, you may not leave
your resource fork open. The steps for loading a resource are:

1. GetCurResourceApp:origapp

2. ResourceStartup(MMStartup)

3. OpenResourceFile(readEnable,0,LGetPathName2(MMStartup,1)):fileID

4. LoadResource

5. If you need to keep it around, DetachResource

6. ResourceShutdown

7. SetCurResourceApp(origapp)

PAGE 64 COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS

SrShutdown ($Bxxx)

Description

This code shuts down the support routines. Its actions, parameters, and errors are up to the author, but as
a minimum it should release any acquired memory and close opened files. This is the last call made to
the support file’s code; the next thing that happens will be Babelfish disconnecting the message handler
and removing the code from memory (unless there are other users).

Note that the support routine must never remove its own request procedure, even when SrShutdown is
called! The reason is that there may be other translator’s still using the support routine. For example,
someone may call BFLoadSupport but not immediately call SrStartUp, planning to do it a little later. In
the meantime someone else can call BFLoadSupport, SrStartUp, SrShutdown, and BFUnloadSupport.
As far as the support routine knows, everyone is “done” with it, but in reality the first translator expects
to be able to call SrStartUp. So a support routine must never remove its own request procedure;
Babelfish will do it at the appropriate time.

SrGetVersion ($Bxxx)

Description

This code’s actions, parameters, and errors are up to the author; but as a minimum it should return the
support file’s version number to the caller.

COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS PAGE 65

Suggested Support Routines
See the separate “MiniMacRezMgr” file to examine an actual support routine that is already
written!

Some support routines have been proposed and are documented here for discussion.

Remap PixelMap
Remap PixelMap contains routines to help deal with remapping PixelMaps.

Remap PixelMap to 640 Mode

This action code modifies a PixelMap so that, on the 640 mode screen with a standard color palette, the
PixelMap will look as much like the original as possible. NOTE: This routine is guaranteed to return
quickly if the pixelmap is already in 640/standard format, so there’s no need to check for that condition
before making this call.

dataIn — Pointer to this structure:
––––––––––––––––––––––––

$00 – LocInfoPtr – Long–Pointer to PixelMap’s LocInfo record
––––––––––––––––––––––––

$04 – SCBsArrayPtr – Long–Pointer to array of SCBs for the PixelMap
––––––––––––––––––––––––

$08 – PalettesPtr – Long–Pointer to an array of palettes for the PixelMap
––––––––––––––––––––––––

dataOut — Pointer to this structure:
––––––––––––––––––––––––

$00 recvCount Word-Number of times the request was received
––––––––––––––––––––––––

$02 SRresult Word-Error code
––––––––––––––––––––––––

The LocInfo’s BoundsRect is assumed to start at 0,0. If the SCBsArrayPtr is NULL then all SCBs are
assumed to be equal to the mode byte in the LocInfo. Only palettes referenced by an SCB will be
accessed.

On return, the PixelMap referenced by the LocInfo has been modified as needed, and the LocInfo itself
has been modified if a change of mode has occurred. The LocInfo is now suitable for drawing (via
PPToPort, etc.) in 640 mode (SCBs = $80) with the standard color palette. Note that the SCB and
palette data passed to this call is not modified.

Errors
$0000 srNoErr No error
$80FF srError Error; call failed
Memory Mgr, GS/OS, Resource Mgr errors returned unchanged

Get Remap Tables

This action code returns a pointer to the translate tables used by action code $03 to convert arbitrary
colors to 640 mode, standard color palette. This can be used by applications or translators that want to
do their own remapping.

dataIn — NIL

dataOut — Pointer to this structure:
––––––––––––––––––––––––

PAGE 66 COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS

$00 recvCount Word-Number of times the request was received
––––––––––––––––––––––––

$02 SRresult Word-Error code
––––––––––––––––––––––––
– TablePtr – Long–Pointer to an even-scanline translate table
––––––––––––––––––––––––

Errors
$0000 srNoErr No error

To get the pointer to the odd-scanline table, add 4096 ($1000) to the returned pointer. Each table is
indexed by standard IIGS color palette entries in the range $0000-$0FFF, interpreted as $0RGB.

To use the table, look up a pixel’s color entry from the appropriate palette, use that to look up a byte in
the appropriate translate table (the even/odd designations aren’t really important, as long as you alternate
between the two for each line), then mask out as many bits as needed from that byte (2 bits for a 640-
sized pixel, 4 for 320). Do not ever shift bits from these tables before using them: each bit must remain
in its own position for the dither patterns to form correctly!

Convert Quotes
Convert Quotes contains a routine to convert quotes in a block of text to or from “curly” quotes.

Convert Quotes

This action code modifies a block of text so it contains curly quotes, or so it contains only straight
quotes.

dataIn — Pointer to this structure:
––––––––––––––––––––––––
– TextStreamLength – Long–Number of characters in text stream
––––––––––––––––––––––––
– TextStreamPtr – Long–Pointer to to text stream
––––––––––––––––––––––––

Which Word–1 means straight to curly; 2 means curly to straight
––––––––––––––––––––––––

dataOut — Pointer to this structure:
––––––––––––––––––––––––

$00 recvCount Word-Number of times the request was received
––––––––––––––––––––––––

$02 SRresult Word-Error code
––––––––––––––––––––––––

Errors
$0000 srNoErr No error

COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS PAGE 67

Standard Data Format
Definitions

Several data formats have already been defined. The formats are not currently listed in numerical order.
Instead, we start with a simple format that is described in-depth, then move on to other formats, focusing
on different points (so even if you’re not interested in an earlier format you should read the information
anyway, to enhance your understanding). Further formats may be proposed by anyone at any time.

For simplicity, any “Implementation Notes” assume no error occurs. Also, the notes are from the
standpoint of an application using a translator to import data. However, the data formats themselves are
defined using the generic terms “Sender” and “Receiver,” which apply equally to a translator or an
application:

• The “Sender” is the one who converts a private data format into the generic data format and sends it
along. When an application is importing, the translator is the Sender; when an application is
exporting, the application is the Sender.

• The “Receiver” is the one who receives the generic data format and converts it into a private data
format. When an application is importing, the application is the Receiver; when an application is
exporting, the translator is the Receiver.

Therefore, if you are writing a translator that imports (sends) data to an application, you must be aware
of the Sender’s responsibilities. If you also support exporting (receiving) data from an application, you
must be aware of the Receiver’s responsibilities.

Likewise, if you are writing an application that imports (receives) data from a translator, you must be
aware of the Receiver’s responsibilities. If you also support exporting (sending) data to a translator, you
must be aware of the Sender’s responsibilities.

For future compatibility, each data record begins with a parameter count. Either the application or the
translator (whoever doesn’t create the data record, but relies on the data in that record) must check to
make sure it doesn’t attempt to store/retrieve values past the end of the data record that was created.

General Rules
• Whenever a pointer to data, or actual data, is passed, the Receiver is expected to copy the

information (if desired) into his own private area.

• Whenever a handle is passed, that handle becomes the sole responsibility of the Receiver. The
Receiver must use _SetHandleID so he becomes the owner of the handle!

• If your application does not make use of a particular piece of information that is being supplied, just
ignore it (if data or a pointer to data) or dispose of it (if handle).

• No data is exchanged in the data record during a TrStartUp or TrShutDown call. The only time a
Sender or Receiver can expect the data record to be valid is during/after the BFRead, TrRead,
BFWrite, and TrWrite calls.

• The main goal of Babelfish is to make life easier for the application, not the translator author.
Therefore, the following rules apply whenever a data format has duplicate fields, such as
“XyzPointer” and “XyzHandle”:

PAGE 68 COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS

• translators that send data to an application (an import translator) must set the pointers to NULL
and make the handles valid (thus applications can rely on always being given handles).

• translators that receive data from an application (an export translator) must check the handle
field first; if the handle is not null then the export code must use only the handle information
(own it, use it, dispose of it). If the handle field was null then the export code obviously uses the
pointer field.

COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS PAGE 69

Format 0: No data returned
This format doesn’t have any data structure. It is designed for those occasions when the application does
not want to go completely through the importation process. Some files contain data that might be suited
to “doing” something with it rather than transforming it. For example, sounds could be played and
pictures could be shown. A sound (or graphic) translator could report that it supports this “play-and-
don’t-import” mode as well as normal importing. If the app does not wish to support code to accept the
data of this kind, it may simply ask for this “null” kind instead.

“Importing” this kind would still require a TrStartup and TrShutdown, but the TrRead would “do it”
rather than fill in a data record and return trDone.

Notes

There doesn’t seem to be any useful “exporting” for this kind.

This suggests having another button on the TMGetFile dialog named “Sample…” which would be
visible only if the application asked for this kind.

PAGE 70 COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS

Format 5: Font
Our font data record looks like this:

––––––––––––––––––––––––
$00 – ParmCount – Word–Number of Parameters (2)

––––––––––––––––––––––––
$02 – –

– FamilyName – 1 Long–Pointer to pString of font family name
– –
––––––––––––––––––––––––

$06 – –
– FontDataHandle – 2 Long–Handle to a standard IIGS font
– –
––––––––––––––––––––––––

FamilyName

The name can be up to 25 characters long. See TB1, page 8-3.

FontData

The standard IIGS font format as described in Apple IIGS Toolbox Reference: Volume 2, page 16-25 and
Volume 3, page 43-5.

Implementation Notes

The application has previously started Babelfish. Now it wants to import a file, so it creates an XferRec
of the appropriate size, fills in the appropriate fields, then calls BFGetFile. After the user selects a file
and translator, the application calls BFImportThis.

Babelfish calls TrStartUp, which sees we’re importing a file, so it opens the specified file
(FilePathPtr+FileNamePtr) for read only.

Because we’re returning a font, TrStartUp sets the DataKinds field to $40 (Font Kind).

Because a font can be translated with two “TrRead” calls (the first time with the data being passed, the
second time with a “done” status), TrStartUp sets the “FullTherm” field to 2, and initializes the
CurrentTherm to 0.

TrStartUp creates space for the data record ($0A bytes) and stores a 2 in the ParmCount field. It stores a
pointer to this data record in the DataRecordPtr field of the XferRec.

TrStartUp returns control to Babelfish.

The application prepares itself to receive a font, then calls BFRead, which in turn calls TrRead.

TrRead reads the file and formulates the two pieces of data we need (the font name and the IIGS font
data). It sets the fields in the data record appropriately, and updates the DataRecordPtr field if
necessary.

Because there aren’t any useful messages that this particular font translator can display, the
StandardMsg bit in ProgressAction is set to display a default “Working…” message.

The CurrentTherm value is incremented (becomes 1) and control returns to Babelfish.

Babelfish updates the progress window (if it’s open for this import the thermometer will now be half
full) and returns to the application.

COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS PAGE 71

The application stores the font name and font data, then calls BFRead again, which in turns calls TrRead
again.

TrRead knows there isn’t any more data to pass, so it sets the Status field to “bfDone” and increments
CurrentTherm (becomes 2). The current message (“Working…”) is still valid, so it clears the
NewMessage bit in ProgressAction to indicate “no change.” Then, control returns to Babelfish.

Babelfish updates the progress window (if it’s open for this import the thermometer will now be
completely full). Because the Status field says “bfDone,” Babelfish calls TrShutDown.

TrShutDown closes the file it was working with, and it releases the space it acquired for the data record.
Then it returns to Babelfish.

Babelfish closes the progress window (if it’s open for this import), then returns the “bfDone” Status to
the application.

The application sees the “bfDone” status, releases the memory it acquired for the XferRec, then uses the
font data that it received earlier.

TIP: If an application is requesting only “font,” it might want to specify “no progress window”
because the conversion happens in only two brief steps. However, if the application sometimes requests
fonts and sometimes requests other kinds of data, the progress window should probably be shown all the
time for consistency.

PAGE 72 COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS

Format 2: Graphic—PixelMap
A single call returns/writes an entire QuickDraw II pixelmap. NOTE: A translator or application might
wish to use Babelfish support routines to remap the image for best display quality on a standard 640
mode screen.

Our Graphic—PixelMap data record looks like this:

––––––––––––––––––––––––
$00 – ParmCount – Word–Number of Parameters (8)

––––––––––––––––––––––––
$02 – –

– LocInfoRecPtr – 1 Long–Pointer to LocInfo record
– –
––––––––––––––––––––––––

$06 – –
– SCBsArrayPtr – 2 Long–Pointer to SCB array
– –
––––––––––––––––––––––––

$0A – –
– PalettesPtr – 3 Long–Pointer to an array of color palettes
– –
––––––––––––––––––––––––

$0E – –
– ImageHnd – 4 Long–Handle to image data
– –
––––––––––––––––––––––––

$12 – –
– SCBsArrayHnd – 5 Long–Handle SCB array
– –
––––––––––––––––––––––––

$16 – –
– PalettesHnd – 6 Long–Handle to an array of color palettes
– –
––––––––––––––––––––––––

$1A – ResolutionH – 7 Long–Horizontal (left/right) resolution of the picture
––––––––––––––––––––––––

$1C – ResolutionV – 8 Long–Vertical (up/down) resolution of the picture
––––––––––––––––––––––––

LocInfoRecPtr

Pointer to a LocInfo record.

BoundsRect must always start at 0,0.

SCBsArrayPtr

Pointer to an array of SCBs corresponding to this pixelmap, 1 byte each. If NULL, all SCBs are equal to
the mode byte in the LocInfo.

PalettesPtr

Pointer to an array of color palettes referenced by this pixelmap. All 16 palettes may be present, or only
those up to the highest one used.

COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS PAGE 73

ImageHnd

Handle to image data. If NULL use the pointer in the LocInfo record (PaletteData field) and do not
dispose of the data. If not NULL, dispose of the handle when you’re through.

SCBsArryHnd

Handle to an array of SCBs (see SCBsArrayPtr). If the handle is NULL use the SCBsArrayPtr and do
not dispose of the data. If not NULL, dispose of the handle when you’re through.

PalettesHnd

Handle to an array of color palettes (see PalettesPtr). If the handle is NULL use the PalettesPtr and do
not dispose of the data. If not NULL, dispose of the handle when you’re through.

ResolutionH

Horizontal (left/right) resolution of the picture, in 640-mode-sized pixels (80dpi). $0000 if unknown.
See notes under Graphic—QuickDraw II Picture format.

ResolutionV

Vertical (up/down) resolution of the picture, in 640-mode-sized pixels (36dpi). $0000 if unknown. See
notes under Graphic—QuickDraw II Picture format.

Notes

When importing, a translator must always put valid handles in the ImageHnd, SCBarrayHnd, and
PalettesHnd fields.

When exporting, an application can put valid handles in 0, 1, 2, or 3 of the ImageHnd, SCBarrayHnd,
and PalettesHnd fields (putting NULL into the unused fields). If a pointer is passed the translator will
copy the data (if necessary) and save it to disk. If a handle is passed the translator will use the data and
dispose of the handle. NOTE: If a handle is passed the corresponding pointer fields must still be
correct!

Although passing a pointer to some data and possibly passing a handle to the same data may seem
repetetive at first, it makes sense when you consider what happens during an import or export.

If only a pointer was passed during import, a translator would load an image into memory and pass a
pointer to the image. The application would then have to make a copy of the data (which requires twice
as much memory and takes time). As soon as the translator gets control again it would release the image
from memory. Instead, the translator just “hands off” the picture to the application by passing a handle
to the data (making it the application’s responsibility).

When exporting, an application might have pictures that are in use. To prevent having to duplicate a
picture just to export it, the application can pass a pointer to the picture. If an application did want to
dispose of the picture it would pass a handle. Note that only the application has the choice; translators
importing to an application must always use handles.

PAGE 74 COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS

Format 4: Graphic—QuickDraw II Picture
Our Graphic—QuickDraw II Picture data record looks like this:

––––––––––––––––––––––––
$00 – ParmCount – Word–Number of Parameters (3)

––––––––––––––––––––––––
$02 – –

– PicHandle – 1 Long–Handle to QuickDraw II picture data structure
– –
––––––––––––––––––––––––

$06 – ResolutionH – 2 Long–Horizontal (left/right) resolution of the picture
––––––––––––––––––––––––

$08 – ResolutionV – 3 Long–Vertical (up/down) resolution of the picture
––––––––––––––––––––––––

PicHandle

A standard QuickDraw II Picture (as created by OpenPicture/…commands…/ClosePicture calls, and as
documented in Apple IIGS Tech Note #46).

ResolutionH

Horizontal (left/right) resolution of the picture, in 640-mode-sized pixels (80dpi). $0000 if unknown.

ResolutionV

Vertical (up/down) resolution of the picture, in 640-mode-sized pixels (36dpi). $0000 if unknown.

Notes

As with any PicHandle, to draw the picture an application pushes the PicHandle, pushes a pointer to a
RECT that defines the destination rectangle, then calls DrawPicture. To avoid scaling the picture, the
destination rect should be set to the picture’s boundary rectangle (see PicFrame in Apple IIGS Tech Note
#46).

No scaling should be done if the picture resolution is unknown or if it is standard screen resolution.
Other resolutions indicate the drawing rectangle should be scaled so that the picture will be displayed at
the proper size. For example:

PictureWidth is the width of the picture’s rectangle (as specified in the PicHandle)
PictureHeight is the height of the picture’s rectangle (as specified in the PicHandle)
DesiredHres := the desired horizontal (left/right) resolution of the picture (80 is standard IIGS 640

mode screen)
DesiredVres := the desired vertical (up/down) resolution of the picture (36 is standard IIGS 640 mode

screen)
ActualHres := the actual horizontal (left/right) resolution of the picture
ActualVres := the actual vertical (up/down) resolution of the picture
If ((ActualHres=0) OR (ActualHres=DesiredHres)) THEN DrawWidth:=PictureWidth ELSE

DrawWidth := (DesiredHres/ActualHres)*PictureWidth
If ((ActualVres=0) OR (ActualVres=DesiredVres)) THEN DrawHeight:=PictureHeight ELSE

DrawHeight := (DesiredVres/ActualVres)*PictureHeight
Now draw the picture using a rectangle that’s DrawWidth wide by DrawHeight high and the picture will

be displayed at the proper size for the desired resolution.

For example, a MacPaint picture (approx. 80x72) being displayed on the IIGS 640 mode screen (80x36)
should be scaled. If the MacPaint rectangle is 200 pixels tall, the rectangle used for drawing on the
screen will be (36/72)*200, or 100 pixels tall.

On the other hand, a MacPaint picture (approx. 80x72) being displayed in GraphicWriter III (80x72)
will not be scaled. But a standard IIGS screen (80x36) will be scaled to (80x72).

COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS PAGE 75

If a 300x300dpi TIFF graphic that is 1000 pixels wide by 1000 pixels tall (3.33 inches square) is being
displayed on the 80x36 IIGS screen, the drawing rectangle will be (80/300)*1000 by (36/300)*1000, or
267 by 120 (3.213x3.333 inches).

Implementation Notes

The QuickDraw picture format is so easy to load, why wouldn’t an application just read a QD II Pict
directly off the disk? Well, that’s the whole point of Babelfish: By using Babelfish an application could
actually support more than a single data format.

Imagine this: An application directly loads files of type $C1/$0001 (Apple IIGS QuickDraw II Picture
File). That’s a single file format that is supported.

Now imagine this: An application uses Babelfish to load “Graphic—QuickDraw II Picture”. The
application is still getting the same data returned (a PicHandle to pass to the DrawPicture routine), but
by going through Babelfish, a wealth of other files can be imported:

A translator could support importing $C0/$0003 (Packed QDIIPict). With no extra effort by the
application, it now supports two file formats.

A translator that’s capable of reading the different “bitmap” formats (packed screen, unpacked screen,
Apple Preferred, PaintWorks Packed, etc.) could very easily return a handle to a QDIIPict. With no
extra effort by the application, it now can import any bitmap image.

A translator that reads a font file off the disk could be modified to create a bitmap font sample of that
font, and return it as a QDIIPict. Again, with no extra effort by the application, it now can import a font
as a QDIIPict.

And so on…

PAGE 76 COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS

Format 3: Graphic—True Color Image
A true color image is a format for pixelmap pictures whose color range or resolution is beyond the
standard IIGS screen capabilities. NOTE: A translator or application might wish to use Babelfish
support routines to remap the image to a standard pixelmap, and from there they may wish to remap the
image for best display quality on a standard 640 mode screen.

Our Graphic—True Color Image data record looks like this:

––––––––––––––––––––––––
$00 – ParmCount – Word–Number of Parameters (7)

––––––––––––––––––––––––
$02 – Width – 1 Word–The width of the image

––––––––––––––––––––––––
$04 – Height – 2 Word–The height of the image

––––––––––––––––––––––––
$06 – Lines – 3 Word–The number of image lines being passed on this call

––––––––––––––––––––––––
$08 – –

– PixelDataPtr – 4 Long–Pointer to the pixel data
– –
––––––––––––––––––––––––

$0C – –
– PixelDataHnd – 5 Long–Handle to the pixel data
– –
––––––––––––––––––––––––

$10 – ResolutionH – 6 Long–Horizontal (left/right) resolution of the picture
––––––––––––––––––––––––

$12 – ResolutionV – 7 Long–Vertical (up/down) resolution of the picture
––––––––––––––––––––––––

Width

The width of the image. This value must be filled in by the Sender before the first call and must not be
changed later.

Height

The height of the image. This value must be filled in by the Sender before the first call and must not be
changed later.

Lines

The number of image lines being passed this call. NOTE: Lines of pixels are sent in top-down order.

PixelDataPtr

Pointer to pixel data (Width * Lines * 3 bytes). Each pixel takes three consecutive bytes, in the order of
Red, Green, and Blue. Each byte’s color range is from 0 to 255.

The image data is assumed to be gamma corrected for display on a device with the NTSC standard
gamma of 2.2, such as the IIGS’ video system.

PixelDataHnd

Handle to the pixel data. If NULL use the PixelDataPtr and do not dispose of the data. If not NULL,
dispose of the handle when you’re through.

COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS PAGE 77

ResolutionH

Horizontal (left/right) resolution of the picture, in 640-mode-sized pixels (80dpi). $0000 if unknown.
See notes under Graphic—QuickDraw II Picture format.

ResolutionV

Vertical (up/down) resolution of the picture, in 640-mode-sized pixels (36dpi). $0000 if unknown. See
notes under Graphic—QuickDraw II Picture format.

Implementation Notes

To convert from a true color pixel to a IIGS color value, drop the low four bits of each byte and pack the
rest together in a word. To convert the other way, duplicate the four bits of each color component: color
levels $0, $1, $2, ..., $E, $F translate to $00, $11, $22, ..., $EE, $FF.

True color images tend to be huge, easily larger than available memory, so translators should read them
in chunks, with generally less than 64K of pixel data per chunk. If the application is just accumulating
all of the lines of pixels it will still run out of memory, however the application normally would be
reducing the data to a more compact form or immediately writing it to disk to allow handling an image
larger than available memory.

PAGE 78 COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS

Format 6: Sound
Our Sound data record looks like this:

––––––––––––––––––––––––
$00 – ParmCount – Word–Number of Parameters (7, 8, 9, or 10)

––––––––––––––––––––––––
$02 – ActionCode – 1 Word–Sender gives order to the Receiver

––––––––––––––––––––––––
$04 – ResponseCode – 2 Word–Receiver’s response

––––––––––––––––––––––––
$06 – –

– SoundDataLength – 3 Long–Number of bytes of sound data being passed
– –
––––––––––––––––––––––––

$0A – –
– SoundDataPointer – 4 Long–Pointer to the sound data
– –
––––––––––––––––––––––––

$0E – –
– SoundDataHandle – 5 Long–Handle to the sound data (or NIL)
– –
––––––––––––––––––––––––
– –

$12 – channelLength – 6 Long–Total length of this channel
– –
––––––––––––––––––––––––

$16 – frequency – 7 Word–Frequency in Hz (0-65535Hz)
––––––––––––––––––––––––

$18 – volume – 8 Word–Volume (1-15 or 0 for max)
––––––––––––––––––––––––

$1A – relPitch – 9 Word–relative pitch (from rSound) or 0 if “none/not provided”
––––––––––––––––––––––––
– –

$1C – SoundName – 10 34 Bytes–pString of sound name (NIL if no name)
– –
––––––––––––––––––––––––

ActionCode

ActionCode is given by the Sender to tell the Receiver what to expect next. The Receiver acts on the
ActionCode and returns a ResponseCode.

Valid ActionCodes:
$0000 Continuing No special action needs to be performed by the Receiver (beyond

accepting the incoming data and doing whatever he needs to with it).
$01xx NewChannel This tells the Receiver to “Prepare to receieve channel xx” (for example,

$0101 tells the Receiver to prepare to receive channel 1).

ResponseCode

ResponseCode is given by the Receiver in response to an ActionCode. The Sender should check the
ResponseCode only immediately after issuing an ActionCode to which a response is expected (at other
times the ResponseCode is undefined).

Valid ResponseCodes:
$00 OK The general response to mean “OK; proceed; send that…”
$80 SkipThat This response can be given after one of the “Prepare to receive…” action

codes is received. It tells the Sender not to bother sending that piece of
information.

COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS PAGE 79

Implementation Notes

You MUST send channels in order, e.g., channel 1 then channel 2, etc.

Future action codes may be defined. The receiever should always respond “Skip That” to unknown
codes.

You must have at least the first 7 parameters.

The volume parameter can be left at zero. This means “maximum”.

The “relPitch” field is the “relative pitch” parameter of an rSound. You can leave this value as zero,
meaning “I don’t know what it is” (it can usually be calculated by the items that need to know it, but for
some pitched sounds it is more accurate to have the parameter present rather than calculated)

If the string length of the name is zero, no name is used.

A Translator must always set the SoundDataHandle and pass the handle to the application. Otherwise,
the SoundDataHandle may be zero, meaning none. (Just like Text Data). NOTE: You can include a name
without including a volume or relative pitch parameter by simply leaving these two as zeros. To omit all
three, use a ParmCount of 7.

Data for a channel may be sent in 1 pass or in multiple passes. The reciever keeps track of the current
channel by watching for the “NewChannel” Action Codes. Only 1 channel at a time may be passed
during a single Read/Write call.

Except for the Response Code, the receiver must never change any parameters in the Sound Data record.

The name, relPitch, frequency, and channel length paramaters must remain valid for the entire channel’s
transfer, i.e., when the Action Code is bfContinuing they are valid. They are not required to be valid
during the “NewChannel” message.

Channels may be different lengths and frequencies (although we don’t know why they ever would be).

PAGE 80 COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS

Format 1: Text
Our Text data record looks like this:

––––––––––––––––––––––––
$00 – ParmCount – Word–Number of Parameters (5-28)

––––––––––––––––––––––––
$02 – ActionCode – 1 Word–Sender gives order to the Receiver

––––––––––––––––––––––––
$04 – ResponseCode – 2 Word–Receiver’s response

––––––––––––––––––––––––
$06 – –

– TextStreamLength – 3 Long–Number of characters in text stream
– –
––––––––––––––––––––––––

$0A – –
– TextStreamPtr – 4 Long–Pointer to the text stream
– –
––––––––––––––––––––––––

$0E – –
– TextStreamHnd – 5 Long–Handle to the text stream
– –
––––––––––––––––––––––––

$12 – FamilyID – 6 Word–Family ID number for this text
––––––––––––––––––––––––

$14 – FontSize – 7 Word–Point size for this text
––––––––––––––––––––––––

$16 – FontStyle – 8 Word–Style for this text
––––––––––––––––––––––––

$18 – ForeColor – 9 Word–Color for this text
––––––––––––––––––––––––

$1A – BackColor – 10 Word–Color for this text’s background
––––––––––––––––––––––––

$1C – Position – 11 Word–Vertical position of this text
––––––––––––––––––––––––

$1E – CharSpacing – 12 Word–chExtra value for this text
––––––––––––––––––––––––

$20 – LineSpacing – 13 Word–Line Spacing for current paragraph
––––––––––––––––––––––––

$22 – SpaceBefore – 14 Word–Space Before this paragraph
––––––––––––––––––––––––

$24 – SpaceAfter – 15 Word–Space After this paragraph
––––––––––––––––––––––––

$26 – FirstIndent – 16 Word–First line indent of this paragraph
––––––––––––––––––––––––

$28 – LeftIndent – 17 Word–Left indent of this paragraph
––––––––––––––––––––––––

$2A – RightIndent – 18 Word–Right indent of this paragraph
––––––––––––––––––––––––

$2C – Justification – 19 Word–Justification of this paragraph
––––––––––––––––––––––––

$2E : TabArray : 20 Array–Array of tabs (64 bytes)
––––––––––––––––––––––––

$6E – Options – 21 Flag Word–Paragraph-oriented options
––––––––––––––––––––––––

$70 – –
– Border – 22 Long (4 Bytes)–Border indicators
– –
––––––––––––––––––––––––

$74 – Page Length – 23 Word–Total length of the page in pixels
––––––––––––––––––––––––

$76 – Page Width – 24 Word–Total width of the page in pixels

COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS PAGE 81

––––––––––––––––––––––––
$78 – –

– –
– –
– Section Rect – 25 Rect–Dimensions of the current section
– –
– –
– –
––––––––––––––––––––––––

$80 – Columns – 26 Word–Number of columns
––––––––––––––––––––––––

$82 – Gutter – 27 Word–Width of gutter between columns in pixels
––––––––––––––––––––––––

$84 – –
– PicHandle – 28 Long–Handle to a QuickDraw II Picture
– –
––––––––––––––––––––––––

ActionCode

ActionCode is initiated by the Sender to tell the Receiver what to expect next, and in some cases it tells
the Receiver to perform some action. The Receiver acts on the ActionCode and returns a
ResponseCode.

Valid ActionCodes:
$00 Continuing No special action needs to be performed by the Receiver (beyond

accepting the incoming data and doing whatever he needs to with it).
$01 GetSettings This tells the Receiver to fill in the data record with its current settings.

This action is required; it should be performed before any data is sent.
For future compatibility, before issuing this action the Sender should
completely initialize the data record to default values it can use (just in
case the Receiver doesn’t fill in all the fields of the data record). Then the
Sender should issue this action so the Receiver can initialize the data
record with its current information.
By this “double initialization” both Sender and Receiver can be sure the
data record is filled with information that each can use.

Each “section” of a document is divided into the following parts. Only the parts that actually exist must
be passed, but if a part is going to be passed, it must be passed in the order listed here. NOTE: If the
Receiver receives a document part out of sequence, that indicates the previous section is complete, and a
new section is beginning.

The following action codes inform the Receiver to “prepare to receive…” a particular part of a document
section:

$02 FirstHeader “Prepare to receive the header for the first page of this section.”
$03 OddHeader “Prepare to receive the header for the odd pages of this section.”
$04 EvenHeader “Prepare to receive the header for the even pages of this section.”
$05 FirstFooter “Prepare to receive the footer for the first page of this section.”
$06 OddFooter “Prepare to receive the footer for the odd pages of this section.”
$07 EvenFooter “Prepare to receive the footer for the even pages of this section.”
$08 BodyText “Prepare to receive the body text for this section.”
$09 Footnotes “Prepare to receive the footnotes for this section.”

PAGE 82 COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS

ResponseCode

ResponseCode is given by the Receiver in response to an ActionCode. The Sender should check the
ResponseCode only immediately after issuing an ActionCode to which a response is expected (at other
times the ResponseCode is undefined).

Valid ResponseCodes:
$00 OK The general response to mean “OK; proceed; send that…”
$80 SkipThat This response can be given after one of the “Prepare to receive…” action

codes is received. It tells the Sender not to bother sending that piece of
information.

TextStreamLength

The length of the text being passed (the number of relevant characters found at TextPtr).

TextStreamPtr

A pointer to the text being passed. The other fields of the text data record contain the formatting
information for this text stream. Any time there is a change in formatting, the current text stream ends
and a new text stream begins. For example, the sentence “The quick brown fox jumps over the lazy
dog” would be sent as five separate text streams:

Helvetica, 10, plain The
bold quick
plain brown fox

Times, 12 jumps over the
italic lazy dog

The text can contain any ASCII character in the range $20-$FF, and select characters in the range $00-
$1F. Characters in the range $00-$1F have special meaning; the currently defined characters are listed
below (all undefined characters are reserved):

$06 Footnote Ref This character signals that the following character is to be interpreted as
the footnote reference (typically displayed superscripted).

$09 Tab Tabs to the next tab stop.
$0A Line Feed
$0B Column Break Denotes the end of a column; following text should start at the top of the

next column.
$0C Page Break Denotes the end of the page.
$0D Return Denotes the end of a paragraph. NOTE: There can be multiple Return

characters in a single text stream; a different text stream needs to be
generated only for changes in format, not for “text lines” or
“paragraphs.”

$0E Soft Hyphen Use hyphen if at right margin, otherwise ignore.
$0F New Line Indicates a new line of the same paragraph.
$14 Page Number Wherever this character appears, the current page number should appear in

its place (if the text appears on page 1, “1” should appear in place of $14;
if the text is moved to page 2, “2” should appear in place of $14).

$15 Date Wherever this character appears, the current date should appear in its
place.

$18 Time Wherever this character appears, the current time should appear in its
place.

$1B Picture A picture goes here. This code just indicates where a picture should be
inserted; check the PicHandle field to determine if there is actually any
picture being passed. NOTE: Only one Picture code should appear in a
single text stream.

COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS PAGE 83

TextStreamHnd

A handle to the text being passed. If the handle is NULL use the TextStreamPtr and do not dispose of
the data If not NULL, dispose of the handle when you’re through. NOTE: Translators must also pass a
handle to an application; Applications may pass either a handle or a pointer.

FamilyID

The font family number that the Font Manager expects to see for InstallFont.

FontSize

The point size of this text (from 1-255).

FontStyle

Contains the same bit settings as used for the QuickDraw II SetTextFace call, with some additions. The
complete definition:

Bit0 Bold Bit8 Underline (word)
Bit1 Italic Bit9 Underline (double)
Bit2 Underline (continuous) Bit10 Underline (dotted)
Bit3 Outline Bit11 Strikethru
Bit4 Shadow Bit12 Small Caps
Bit5 <reserved> Bit13 All Caps
Bit6 Superscript Bit14 Inverted (fore/back swap)
Bit7 Subscript Bit15 Hidden

NOTE: Absence of styles indicates “Plain” style.

ForeColor

Indicates the color for text in this stream in IIgs format 0-15 (Page 16-35 Toolbox Ref Vol 2).

BackColor

Indicates the background color for text in this stream in IIgs format 0-15 (Page 16-35 Toolbox Ref Vol
2).

Position

The number of pixels to shift this text up or down from the normal baseline. Positive numbers shift
character position down; negative number shift character position up. 0 displays “normally.”
NOTE: Actual superscripting/subscripting should be done via the FontStyle field.

CharSpacing

The number of pixels to add or subtract after each character in this text stream (“kerning”). Positive
numbers increase space; negative numbers decrease space. NOTE: This effect is usually accomplished
by setting chExtra, so the limitations of using chExtra apply.

LineSpacing

The line height (from baseline to baseline), expressed as a point size. 0 means “automatic” line spacing.
To achieve double or triple spacing, set LineSpacing to double or triple the current FontSize value.

PAGE 84 COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS

SpaceBefore

The number of pixels to leave blank before a paragraph.

SpaceAfter

The number of pixels to leave blank after a paragraph.

FirstIndent

The offset (in pixels) from the leftmost text position for the left side of the first line of a paragraph.
NOTE: The FirstIndent and LeftIndent are not relative to each other; they are both given as an offset
from the leftmost text position.

LeftIndent

The offset (in pixels) from the leftmost text position for the left side of lines 2-X of a paragraph.
NOTE: The FirstIndent and LeftIndent are not relative to each other; they are both given as an offset
from the leftmost text position.

RightIndent

The offset (in pixels) from the rightmost text position for the right side of all lines of a paragraph.

Justification

The paragraph justification: 0=Left, 1=Center, 2=Right, 3=Full

TabArray

The tab array defines 16 tab stops. Each TabArray element is formatted as follows:

––––––––––––––––––––––––
$00 TabLeader Byte–ASCII character to use for a tab leader (or filler) character

––––––––––––––––––––––––
$01 TabType Byte–0=No Tab Stop; 1=Left; 2=Center; 3=Right; 4=Decimal

––––––––––––––––––––––––
$02 – TabPosition – Word–The offset (in pixels) from the leftmost text position for the tab.

––––––––––––––––––––––––

Tab stops can be defined in any order. While there must be 16 tab stops defined, TabType entries of 0
(no tab) can appear anywhere, even between actual tab stops.

TabLeader entries of 0 mean “no leader.”

Options

A flag word indicating various paragraph options:

Bit0 Keep lines of this paragraph together
Bit1 Keep this paragraph and the next paragraph together
Bits2-15 Reserved (must be clear)

COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS PAGE 85

Border

This long is treated as 4 separate flag bytes (one each for the Top, Bottom, Left and Right of the
paragraph). Each flag byte looks like this:

Bit0-Bit2 Thickness (in pixels) of line 1 (closest to paragraph)
Bit3-Bit5 Thickness (in pixels) of line 2 (further away from paragraph)
Bit6-Bit7 Space (in pixels) between the two lines (00=no space; 01=space the

thickness of line 1; 10=space the thickness of line 2; 11=space the absolute
difference between line 1 and line 2).

Page Length

The length of the page in pixels. This is from the absolute top edge to the bottom edge, including top
and bottom margins and the main body.

Page Width

The width of the page in pixels. This is from the absolute left edge to the right edge, including any side
margins.

Section Rect

The rectangle of the current section of text. This rectangle is relative to the whole page (where the top
and left are 0,0). This should change when moving between headers, footers, and main bodies, etc. The
“Indent” values are based from this rectangle.

Columns

The number of columns in this section.

Gutter

The space between adjacent columns, in pixels.

PicHandle

Data for a standard QuickDraw II Picture (see Apple IIGS Tech Note #46). NULL if no picture is being
passed.

Implementation Notes

IMPORTANT: Beware of the handles! By definition, any handle you are passed belongs to you! If you
are passed a PicHandle you must be sure to dispose of it, even if your application or translator does
nothing with pictures embedded in text!

Imagine we are importing into an application that only supports body text. We have a Microsoft Word
document that has two “sections” (a section is like a “mini-document”…each section can have its own
headers, footers, body text, and footnotes).

In the first section there’s a header on every page (no footer) and the single-spaced body text is “This is a
test”.
In the second section there’s a footer on every page (no header) and the double-spaced body text is “of
the Word importer.”

PAGE 86 COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS

Importing this file would generate these actions:

The translator sends “GetSettings” so the application will initialize the data record with all its current
settings.

The translator reads a hunk of the file and finds the odd and even header, so it says “OddHeader.” The
application responds “SkipThat.” The translator says “EvenHeader.” The application responds
“SkipThat.”

The translator finds no footers but does encounter the “This is a test” body text, so it sends “BodyText.”
The application responds “OK” because it wants the body text.

The translator fills in the data record:
TextLength=8; Text=“This is ”; Action=Continuing; line height=single; style=italic

App stores text and calls BFRead

The translator fills in the data record:
TextLength=6; Text=“a test”; Action=Continuing; style=plain

App stores text and calls BFRead

The translator is done with the first section so it begins working on the new section. It reads a hunk of
the file and finds the odd and even footer, so it says “OddFooter.” The application sees the action is no
longer “Continuing”…at this point it has the complete BodyText from the first section. Because
sections don’t matter to the application, the application continues the import in case there is more “body
text” in another section. The application responds “SkipThat” (in response to “OddFooter”). The
translator says “EvenFooter.” The application responds “SkipThat.”

The translator says “BodyText” and the application responds “OK” because it wants body text.

The translator fills in the data record:
TextLength=7; Text=“of the ”; Action=Continuing; line height=double; style=bold

App stores text and calls BFRead

The translator fills in the data record:
TextLength=14; Text=“Word importer.”; Action=Continuing; style=plain

App stores text and calls BFRead

The translator sees that there is nothing more to import, so it disposes of the data record and sets the
XferRec’s Status to bfDone (which causes Babelfish to call TrShutDown). When the app gets bfDone it
disposes of the XferRec and uses the imported text.

COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS PAGE 87

Questions and Answers
When an application says it can import more than a single kind
of data, how does my TrStartup(ForImport) code determine
which ONE of those formats to return?
You just determine the best format to return. NOTE: After determining the format that you’ll be using,
remember to change the DataKinds field to indicate just that single kind!

If you’re writing a font translator that also can return a picture of the font, your best format is a font. If
an application says it can take either a font or a picture, then you would return the font because that is
your native and best format. Consider this: if an application says it can take a font and a picture
(granted, a very odd combination) then it is probably able to take the returned font and make a picture of
it (but it could not easily take a picture and make a font of it!).

If you’re writing a translator that loads a QuickDraw II Picture, but it can also return a PixelMap, your
best format is a QuickDraw II Picture, so that is your first and best choice.

What Next?

Data Formats

We have only defined a few data formats so far. And the ones we defined were ones that we had some
knowledge of. As time goes on we hope that more formats will be defined. Data formats will then be
added to this document.

Translators

Without translators, Babelfish has nothing to manage! If you want to work on a particular translator, let
Dave Hecker (support@sevenhills.com) know; he’ll let you know if someone else is already working on
it (no sense duplicating effort).

Applications

Without applications that use Babelfish there’s no point!

Seven Hills plans to convert all its products to require Babelfish for import/export. Steve and Joe at
GS+ Magazine have already modified EGOed to support it. We hope you’ll consider supporting or
requiring Babelfish in your products.

Currently, SuperConvert and Spectrum both support Babelfish, more applications will be added as time
goes on.

PAGE 88 COPYRIGHT © 1991-1998 SEVEN HILLS SOLUTIONS SPECIALISTS

