
 Apple® IIGS HTML Tool Set
 Reference Manual

Dedicated to the memory of Joe Kohn 1947-2010

HTML Tool Set is Freeware and Copyright © 1996-2022 Ewen Wannop

HTML Tool Set and its supporting documentation may not be printed,
copied, or distributed for profit.

Distributing and/or archiving is restricted while in an electronic form.
Any “free” distribution must be given permission by Ewen Wannop

in advance -- please contact via email by sending mail to:

spectrumdaddy@speccie.uk

There is no guarantee that the right to redistribute this material
will be granted. The contents of this document may not be

reprinted in part or in whole.

mailto:spectrumdaddy@speccie.uk?subject=
mailto:spectrumdaddy@speccie.uk?subject=

3

Introduction! 4

Using the HTML Tool Set
! Requirements 5
! Programming 6
! Using the Calls 8
! The Routines 9

The Calls
 HTMLBootInit ! 10
 HTMLStartup ! 10
 HTMLShutDown ! 11
 HTMLVersion ! 11
 HTMLReset ! 12
 HTMLStatus ! 12
 HTMLInit ! 13
 HTMLParse ! 14
 HTMLOpenDisplay ! 15
 HTMLCloseDisplay ! 16
 HTMLInsertTERecord ! 16
 HTMLClearDisplay ! 17
 HTMLEventTask ! 17
 HTMLGetTitle ! 19
 HTMLGoToName ! 20
 HTMLFindString ! 21
 HTMLGetForm ! 22
 HTMLCheckForForm ! 23
 HTMLGetError ! 24
 HTMLParse2 ! 25
 HTMLEventTask2 ! 26
 HTMLGetForm2 ! 27
 HTMLOpenDisplay2 ! 28
 HTMLEventToDisplay ! 29
 HTMLGetPage ! 30
 HTMLPostForm ! 34
 HTMLCacheControl ! 38
 HTMLSetTextTERecord ! 42
 HTMLFindString2 ! 43
 HTMLExtractText ! 44
 HTMLWriteToLog ! 46
 HTMLSetLogPath ! 48

Appendix
 Cookies 49
 Example of Posting a Form 50
 Rolling your own Web Browser 51
 Using the HTML Color & Custom tags 52
 HTMLTool Set Error Codes & Links 54

Contents

4

Back in 1996, after a late night session at KansasFest, Geoff Weiss and myself
took it upon ourselves to write an HTML Browser for the IIgs.

Geoff wrote the Spectrum scripts to make it all work, and I wrote an HTML
engine that was used to capture and parse the HTML data to build the display.

Spectrum Internet Suite, or SIS as it is better known was born.

Subsequently I used the source code from the engine to add HTML display
features to Spectrum, more recently to add a custom HTML display to SAM2,
and then adapted that original code to produce a stand-alone HTML Tool Set.

I have now expanded the HTML Tool to include calls that GET web pages and
POST forms. This allows web browsers to be built with only a few Tool calls.

The HTML Tool Set has been released into the Public Domain, so that anyone
who wishes, can build their own web browser, or display HTML within an
application.

Full programming details for using the Tool are given within this manual.

It is up to you to do the rest!

If you have any questions about the use of this toolset, please contact:

 spectrumdaddy@speccie.uk

HTMLTool Set is Freeware and Copyright © 1996-2022 Ewen Wannop

Introduction

Introduction to the HTML Tool Set

mailto:spectrumdaddy@speccie.uk?subject=
mailto:spectrumdaddy@speccie.uk?subject=

5

Requirements

The HTML Tool Set should be started after the application has started any other
tools that it requires.

The HTML Tool Set requires these tools to be active:

Control Manager, Dialog Manager, Event Manager, Font Manager, Integer Math Tool
Set, Memory Manager, Miscellaneous Tool Set, QuickDraw II, QuickDraw II Auxiliary,
Scrap Manager, TextEdit Tool Set, Window Manager

Note: If you are using the calls HTMLGetPage or HTMLPostPage, your
application should first check that version 1.0.3 or later of the HTML Tool is
present, and that Marinetti TCP/IP 3.0b11 is installed and active.

The HTML Tool Set requires several custom fonts to be installed. These are
supplied with the original archive:

SIS-1, SIS-2, SIS-3, SIS-4, SIS-5

In addition, the HTML Tool Set can use the ByteWorks Talking Tools, which are
available on the OPUS][collection from:

https://juiced.gs/store/category/software/

To obtain the HTML Tool Set, and any of my other software:

http://speccie.uk

In Use

Using the HTML Tool Set

https://juiced.gs/store/category/software/
https://juiced.gs/store/category/software/
http://speccie.uk
http://speccie.uk

6

Programming

The HTML Tool Set may be used in two ways, either as an engine to build a
TextEdit Record from supplied text containing HTML code, or to further display
a TextEdit Record in a window where the user can interact with the display.

In all cases where a TextEdit Record is returned, it is the responsibility of the
application to kill the TextEdit Record when it has finished with it.

To use the HTML Tool Set, you should first start up any other tools you may
require, making sure those required by the HTML Tool Set have also been
started. To prime the Tool Set, call HTMLInit, checking that the call was successful.

To parse text containing HTML, call HTMLParse or HTMLParse2, and then on
return from the call, either display the TextEdit Record within your own window,
or within the optional window opened from the HTMLOpenDisplay or
HTMLOpenDisplay2 calls using the HTMLInsertTERecord or
HTMLSetTextTERecord calls. For HTMLOpenDisplay the optional window is
opened full screen, drawn just below the menu bar, and contains one TextEdit
Control. For HTMLOpenDisplay2 the window will be drawn according to the
supplied Window Template.

The parsing process builds a display based on HTTP/1.1 specifications. The IIgs
display is fairly limited, so you will find that tables may not display correctly, also
any embedded scripting will be ignored. The HTML Tool Set builds a page with
various links and other hidden data drawn in a zero width font. This allows data
to be contained invisibly within the display. This data can then be later retrieved
from the HTMLEventTask, HTMLEventTask2 or HTMLEventToDisplay calls when
the user double-clicks a link.

For simpler applications such as the HTML display in the SAM2 email client, the
TextEdit Record can be displayed within your own window, but if you intend to
build a web browser, you will need to either use the optional window from the
Tool, or one from a window template with the specified TEControl ID, for the
user to have full control over the hidden data in the TextEdit Record.

If a URL or Link data is returned from the HTMLEventTask call, it is up to the
application to verify the data is valid, what kind of data it is, and then to take the
appropriate action.

If Form data is returned from the HTMLGetForm or HTMLGetForm2 calls, it will
be up to the application to take the appropriate action in posting the data.

7

To build a complete web browser using the interactive window, you can retrieve
web pages from a web server using the HTMLGetPage call. This requires TCP/IP
to be installed and configured. From a URL passed in the call, this call can not
only retrieve the raw data for the page, but optionally parse the data, returning a
formatted TextEdit Handle, that can be inserted into the display window with
HTMLInsertTERecord or HTMLSetTextTERecord.

If there are any Forms in the page, when their Save or Submit buttons are
double-clicked, use the Form number returned from HTMLEventTask or
HTMLEventTask 2, and pass it to HTMLPostForm to post the data.

When you request a page with the HTMLGetPage call, if it reports there was no
<html> tag within the data, you may well have download a plain file instead.
Along with the HTMLGetPage call set to return only HEAD data, the browser can
use this information to download files from a web server, either automatically
saving the data to disk from the Handle, or giving the User the choice of where to
save the returned data using a Standard File dialog.

A web browser will need a considerable amount of code in addition to these few
calls, but with just that one HTMLGetPage call, you can return a fully formatted
TextEdit Record of a web page, thus taking much of the hard work out of
building your own browser!

If you are creating your own web pages, you can always check how an HTML file
you have built will display using the HTMLTool, if you open the file in the
Spectrum™ Editor. If the file contains an <html> tag, you will first be asked if
you wish to display it as HTML. Click "Yes" to see how it will display.

8

Using the Calls

Simple HTML Parsing
 Call sequence:

 HTMLInit

! ! HTMLParse or HTMLParse2

! ! HTMLGetError

Using the Optional Window
 Call Sequence:

 HTMLOpenDisplay or HTMLOpenDisplay2

! ! HTMLInsertTERecord or HTMLSetTextTERecord

! ! HTMLEventTask or HTMLEventTask2

! ! HTMLEventToDisplay! (optional)

! ! HTMLCloseDisplay

 While the window is open, these calls are active:

 HTMLClearDisplay

! ! HTMLGetTitle

! ! HTMLGotoName

! ! HTMLFindString or HTMLFindString2

! ! HTMLGetForm or HTMLGetForm2

! ! HTMLCheckForForm

! ! HTMLExtractText

Receiving web pages or files
! To retrieve pages:

! ! HTMLGetPage

! To post forms:

 ! HMTLPostForm

Working with Cache files
 ! HMTLCacheControl

Note:
Loop on the HTMLEventTask call till the user indicates by either an Esc, OA-.,
or OA-W key press, or that a Close box has been clicked, that the window should
be closed.

9

The Routines

Housekeeping Routines

 HTMLBootInit! Initialises the HTML Tool Set; called only by the Tool Locator
! ! must not be called by an application!
! HTMLStartUp! Starts up the HTML Tool Set for use by an application!
! HTMLShutDown! Shuts down the HTML Tool Set
! HTMLVersion! Returns the version number of the HTML Tool Set!
! HTMLReset! Resets the HTML Tool Set; called only when the system is reset
! ! must not be called by an application
! HTMLStatus! Indicates if the HTML Tool Set is active

Global Routines

 HTMLInit! Called by an application to prime the HTML Tool Set for use
! HTMLParse! Parses raw HTML text into a TERecord
! HTMLParse2! Parses raw HTML text into a TERecord with pixel width
! HTMLGetError ! Returns the last error

Display Routines

 HTMLOpenDisplay! Opens an optional display window with a single TextEdit Control
! HTMLOpenDisplay2! Opens an optional display window from a supplied window template
! HTMLCloseDisplay! Closes the optional display window
! HTMLInsertTERecord! Inserts a TERecord into the open display window
! HTMLSetTextTERecord!Replaces the entire text of the open display window
! HTMLClearDisplay! Clears any text from the open display window
! HTMLEventTask! Gives user interaction with the open display window
! HTMLEventTask2! Gives user interaction with the open display window
! HTMLEventToDisplay! Gives user interaction with the open display from the application's EventRecord
! HTMLGetTitle! Returns the page Title
! HTMLGotoName! Jumps to a Name Link within the page in the open display window
! HTMLGotoName2! Jumps to a Name Link within the page in the open display window
! HTMLFindString! Finds and jumps to a string within the open display window
! HTMLFindString2! Finds and jumps to a string within the open display window
! HTMLGetForm! Returns the Form data from an active form
! HTMLGetForm2! Returns the Form data from an active form
! HTMLCheckForForm! Returns the number of active Forms in the page of an open display window

Online Routines

 HTMLGetPage! Retrieves a web page or file from a supplied URL
! HTMLPostForm! Posts a form from the current web page
! HTMLSetLogPath! Sets the pathname to be used for the Debug file

Offline Routines
 HTMLCacheControl! Saves, Updates, Restores, and Kills page files from the Cache folder

 HTMLExtractText! Extracts and prepares text from a TERecord for Printing
! HTMLWriteToLog! Allows a client to add custom text to the Debug Log file

10

$0182	 HTMLBootInit
! Initialises the HTML Tool; called only by the Tool Locator.

! Warning
! An Application must never make this call.

Parameters! The stack is not affected by this call. There are no input or output parameters.

Errors! None

C	 Call must not be made by an application.

$0282	 HTMLStartUp
! Starts up the HTML Tool for use by an application.

! Important
! Your Application must make this call before it makes any other HTML Tool calls.

Parameters! The stack is not affected by this call. There are no input or output parameters.

Errors! None

C	 extern pascal void HTMLStartUp ();

11

$0382	 HTMLShutDown
! Shuts down the HTML Tool.

! Important
! If your Application has started up the HTML Tool, the application must make this
! call before it quits.

Parameters! The stack is not affected by this call. There are no input or output parameters.

Errors! None

C	 extern pascal void HTMLShutDown ();

$0482	 HTMLVersion
! Returns the version number of the HTML Tool.

Parameters

Stack before call

Stack after call

Errors! None

C	 extern pascal Word HTMLVersion ();

! Word! versionInfo

previous contents
wordspace
 Word—Space for result

←!SP

previous contents
versionInfo
 Word—Version number of HTML Tool

←!SP

12

$0582	 HTMLReset
! Resets the HTML Tool; called only when the system is reset.

! Warning
! An Application must never make this call.

Parameters! The stack is not affected by this call. There are no input or output parameters.

Errors! None

C	 Call must not be made by an application.

$0682	 HTMLStatus
! Indicates whether the HTML Tool Set is active.
! HTMLStatus returns TRUE if HTMLStartup has been called and HTMLShutDown
! has not been called. The routine returns FALSE if HTMLStartUp has not been
! called at all or if HTMLShutDown has been called since the last time HTMLStartUp
! was called.

Parameters

Stack before call

Stack after call

Errors! None

C	 extern pascal Boolean HTMLStatus ();

! Word! activeFlag

previous contents
wordspace
 Word—Space for result

←!SP

previous contents
activeFlag
 Word—BOOLEAN; TRUE if HTML Tool active, FALSE if inactive

←!SP

13

$0982	 HTMLInit
! Prepares the HTML Tool for use by an application.

This call must be made by the application before any of the other calls are made.

The call checks that the required fonts are installed, and any required Tools are
currently active. It also checks to see if the optional TalkingTools are present.

Parameters! The stack is not affected by this call. There are no input or output parameters.

Errors! $82FE! htNoTools! ! Required Fonts and Tools not present

C	 extern pascal void HTMLInit ()

14

$0A82	 HTMLParse
! Parses the supplied HTML text into a new TERecord.

Parameters

Stack before call

Stack after call

Errors! $8202! htBadHandle ! ! A bad Handle was supplied
! $8206! htNoData! ! An empty Handle or buffer was supplied
! $8207! htFailed! ! The parsing failed
! $8208! htNotInit! ! HTMLInit has not been called
! $82FF! htBadCall! ! Incorrect parameters supplied

C	 extern pascal Long HTMLParse (textDescriptor, textRef, textLength);

! Long! textRef, textLength, teH

! Word! textDescriptor

Note: If a <title> tag was found during parsing, it will be embedded at the start of the TERecord using
the invisible font. Unique markers are placed at either end of the string. An application can then easily
extract the Title from the page if needed. The Title will never exceed 74 characters, but you need to
allow a 78 byte buffer to include the four unique markers: [*A Title Will Be Found In Here*]

previous contents

longspace

textDescriptor

textRef

textLength

 Long—Space for result
	

 Word—Format of text stored at textRef

 Long—Reference to the input text buffer

 Long—Length of the buffer referred to by textRef

←!SP

previous contents

teH
 Long—Handle to new TERecord

←!SP

15

textDescriptor! The format of the text to be parsed, and the type of reference stored in textRef.

Reserved! Bits not used must be set to 0.

dataFormat! bit 0 ! Defines the format of the passed text:
! ! ! 0 = textRef pointer to a text buffer; textLength contains the
! ! ! length of the buffer (in bytes)
! ! ! 1 = textRef pointer to a Handle holding text; textLength is ignored
! bit 12 = Set to limit text size to 12pt or larger
! bit 13 = Display progress thermometer box at position: '3,360,11,510'

textLength! Length of the buffer referenced in textRef. This field is valid only if textRef
! points to a buffer.

$0B82	 HTMLOpenDisplay
! Opens the optional display window. This window is used by many of the calls.

Parameters

Stack before call

Stack after call

Errors! $8202! htWindowOpen! Window open
! $8208! htNotInit! ! HTMLInit has not been called

C	 extern pascal Long HTMLOpenDisplay ();

! Long! theWindow

previous contents

longspace
 Long—Space for result

←!SP

previous contents

theWindow
 Long—Pointer to window’s GrafPort; NIL if error

←!SP

16

$0C82	 HTMLCloseDisplay
! Closes the optional display window.

Parameters! The stack is not affected by this call. There are no input or output parameters.

Errors! $8204! htWindowClosed! Window closed
! $8208! htNotInit! ! HTMLInit has not been called

C	 extern pascal void HTMLCloseDisplay ();

$0D82	 HTMLInsertTERecord
! Inserts a TERecord at the end of the text in the optional display window.

Parameters

Stack before call

Stack after call

Errors! $82-2! htBadHandle! Invalid TERecord
! $8204! htWindowClosed! Window closed
! $8206! htNoData! ! The TERecord is empty
! $8208! htNotInit! ! HTMLInit has not been called

C	 extern pascal void HTMLInsertTERecord (teH);

! Long! teH

Note: The calling application must Kill the passed TERecord after the call if it no longer requires it.

previous contents

teH
 Long—Handle to TERecord

←!SP

previous contents

←!SP

17

$0F82	 HTMLEventTask
! Allows the user to interact with the optional display window.

Parameters

Stack before call

Stack after call

Errors! $8204! htWindowClosed! Window closed
! $8208! htNotInit! ! HTMLInit has not been called

$0E82	 HTMLClearDisplay
! Clears the text from the optional display window.

Parameters! The stack is not affected by this call. There are no input or output parameters.

Errors! $8204! htWindowClosed! Window closed
! $8208! htNotInit! ! HTMLInit has not been called

C	 extern pascal void HTMLClearDisplay ();

Note: This call creates a new TextEdit control. Your application should call GetCtlHandleFromID to
recover the new Handle that has been allocated.

previous contents

wordspace

longspace

 Word—Space for result

! Long—Space for result

←!SP

previous contents
eventCode

eventValue

 Word—eventCode double-click or keypress action; result in eventValue

 Long—Pointer to a gsString or a value

←!SP

18

C	 extern pascal Word Long HTMLEventTask ();

! Long! eventValue

! Word! eventCode

EventRec

eventCode ! Indicates which item the user double-clicked or which keys they pressed.

! ! $00! No item selected
! ! $01! URL of a page or email address was double-clicked
! ! $02! URL of an image icon was double-clicked
! ! $05! a GET submit button was double-clicked
! ! $06! a POST submit button was double-clicked
! ! $08! a LINKed icon was double-clicked
! ! $10! Escape key was pressed
! ! $11! OA-. (stop) was pressed
! ! $12! OA-W was pressed

eventValue ! Returns either a Pointer or a value depending on eventCode.

! ! $00! Not applicable
! ! $01! Pointer to gsString (wordlength + text)
! ! $02! Pointer to gsString (wordlength + text)
! ! $05! LongWord number of a Form
! ! $06! LongWord number of a Form
! ! $08! Pointer to gsString (wordlength + text)
! ! $10! Not applicable
! ! $11! Not applicable
! ! $12! Not applicable

19

$1082	 HTMLGetTitle
! Returns a Pointer to the Title of the page if present. Null if no Title.

Parameters

Stack before call

Stack after call

Errors! $8204! htWindowClosed! Window closed
! $8208! htNotInit! ! HTMLInit has not been called

C	 extern pascal Long HTMLGetTitle ();

! Long! titleString

previous contents

longspace
 Long—Space for result

←!SP

previous contents

titleString
 Long—Pointer to String (wordlength + text) holding page Title

←!SP

20

$1182	 HTMLGoToName
! Jumps to a Name Link .

Parameters

Stack before call

Stack after call

Errors! $8204! htWindowClosed! Window closed
! $8207! htFailed! ! ‘Name’ String not found
! $8208! htNotInit! ! HTMLInit has not been called
! $82FF! htBadCall! ! Incorrect parameters supplied

C	 extern pascal Long HTMLGoToName (stringPointer);

! Long! position, stringPointer

Note: If the target ‘Name’ is found, the cursor selection will be placed after the ‘Name’, and the text
will be scrolled to place that line at the top of the screen. If you need to put the line elsewhere on the
screen, use the returned Cursor position to calculate the scrolling offset.

previous contents

longspace

stringPointer

 Long—Space for result

! Long—Pointer to a ‘Name’ String (bytelength + text)

←!SP

previous contents

position
 Long—Cursor position; next character offset in the TERecord

←!SP

21

$1282	 HTMLFindString
! Finds the next occurrence of ‘String’, searching from the current cursor position.

Parameters

Stack before call

Stack after call

Errors! $8204! htWindowClosed! Window closed
! $8207! htFailed! ! ‘Name’ String not found
! $8208! htNotInit! ! HTMLInit has not been called
! $82FF! htBadCall! ! Incorrect parameters supplied

C	 extern pascal Long HTMLFindString (stringPointer);

! Long! position, stringPointer

This call only searches the main TextEdit control (ID $7000), and will ignore hidden text using the
SIS-4 font. Please refer to the HTMLFindString2 call for more flexible searching.

Note: If the target string is found, the text will be selected, and scrolled to place it in the middle of the
screen.

previous contents

position
 Long— Cursor position; next character offset in the TERecord

←!SP

previous contents

longspace

stringPointer

 Long—Space for result

! Long—Pointer to a String (bytelength + text)

←!SP

22

$1382	 HTMLGetForm
! Returns Form data.

Parameters

Stack before call

Stack after call

Errors! $8204! htWindowClosed! Window closed
! $8207! htFailed! ! Form does not exist
! $8208! htNotInit! ! HTMLInit has not been called
! $82FF! htBadCall! ! Incorrect parameters supplied

C	 extern pascal Word Long Long HTMLGetForm (formNumber);

! Long! urlPointer, formDataPointer

! Word! formNumber, postCode

previous contents
wordspace

longspace

longspace

formNumber

 Word—Space for result
	

 Long— Space for result

 Long— Space for result

 Word—Number of Form

←!SP

previous contents
postCode

urlPointer

formDataPointer

 Word—postCode ‘G’ or ‘P’ for ‘GET’ or ‘POST’

 Long—Pointer to TERecord holding URL

 Long—Pointer to TERecord holding Form Data

←!SP

23

$1482	 HTMLCheckForForm
! Returns the number of Forms within the page.

Parameters

Stack before call

Stack after call

Errors! None

C	 extern pascal Word HTMLCheckForForm ();

! Word! activeForm

previous contents
wordspace
 Word—Space for result

←!SP

previous contents
activeForm
 Word—Number of Active Forms

←!SP

24

$1582	 HTMLGetError
! Returns the last errorValue.

Parameters

Stack before call

Stack after call

Errors! None

C	 extern pascal Word HTMLGetError ();

! Word! errorValue

previous contents
wordspace
 Word—Space for result

←!SP

previous contents
errorValue
 Word—Last errorValue

←!SP

25

$1682	 HTMLParse2
! Parses the supplied HTML text into a new TERecord.

Parameters

Stack before call

Stack after call

Errors! $8202! htBadHandle ! ! A bad Handle was supplied
! $8206! htNoData! ! An empty Handle or buffer was supplied
! $8207! htFailed! ! The parsing failed
! $8208! htNotInit! ! HTMLInit has not been called
! $82FF! htBadCall! ! Incorrect parameters supplied

C	 extern pascal Long HTMLParse (textDescriptor, textRef, textLength,
! rightMargin);

! Long! textRef, textLength, teH

! Word! textDescriptor, rightMargin

Note: This is identical to the HTMLParse call, but with the addition of the rightMargin value being
passed. This value controls how <center>, <hr align=center> and <hr align=right> tags
are handled. You should pass the usable width in pixels for the TextEdit control that is being used.

previous contents

longspace

textDescriptor

textRef

textLength

rightMargin

 Long—Space for result
	

 Word—Format of text stored at textRef

 Long—Reference to the input text buffer

 Long—Length of the buffer referred to by textRef

! Word—The right margin of the TextEdit control in pixels

←!SP

previous contents

teH
 Long—Handle to new TERecord

←!SP

26

$1782	 HTMLEventTask2
! Allows the user to interact with the optional display window.

Parameters

Stack before call

Stack after call

Errors! $8204! htWindowClosed! Window closed
! $8208! htNotInit! ! HTMLInit has not been called

C	 extern pascal void HTMLEventTask2 (buffPtr);

! Long! buffPtr

This call returns the same information as HTMLEventTask, but with the results in a data
buffer pointed at by buffPtr, rather than on the stack.

On output eventCode and eventValue hold the returned values. Refer to Page 17-18 for more
details.

buffer 6 bytes:

eventCode ! two bytes
eventValue ! four bytes

previous contents

buffPtr
 Long—Pointer to 6 byte buffer

←!SP

previous contents

←!SP

27

$1882	 HTMLGetForm2
! Returns Form data.

Parameters

Stack before call

Stack after call

Errors! $8204! htWindowClosed! Window closed
! $8207! htFailed! ! Form does not exist
! $8208! htNotInit! ! HTMLInit has not been called
! $82FF! htBadCall! ! Incorrect parameters supplied

C	 extern pascal void HTMLGetForm2 (buffPtr);

! Long! buffPtr

This call returns the same information as GetForm, but with the results in a data buffer
pointed at by buffPtr, rather than on the stack.

On input, formNumber holds the number of the form to retrieve the data from, and on output
postCode, urlPointer, and formDataPointer hold the returned values.

buffer 12 bytes:

formNumber! two bytes! Number of Form (input)
postCode ! two bytes! 'G' or 'P' for 'GET' or 'POST' (output)
urlPointer! four bytes! Pointer to TERecord holding URL (output)
formDataPointer! four bytes! Pointer to TERecord holding Form Data (output)

previous contents

buffPtr
 Long—Pointer to 12 byte buffer

←!SP

previous contents

←!SP

28

$1982	 HTMLOpenDisplay2
! Opens a custom display window from a supplied template using NewWindow2.

Parameters

Stack before call

Stack after call

Errors! $8202! htWindowOpen! Window open
! $8208! htNotInit! ! HTMLInit has not been called

C	 extern pascal Long HTMLOpenDisplay2 (templateFormat,
! windowTemplate);

! Long! windowTemplate, theWindow

! Word! templateFormat

templateFormat! Indicates the format of the windowTemplate reference:
! $00! Pointer
! $01! Handle
! $02! Resource
This call allows a custom window template to be used, rather than the basic window opened
by HTMLOpenDisplay. The window should then be interacted with in the same way.
Note: The window template must include a TextEdit control with these settings:
! TextEdit control with the ID $7000
! moreFlags ! = $7400 ! ! textflags ! = $44000000
Note: Optionally you can have a Stop Icon or Button control with the ID $8000:
! key equivalent = Escape key,

previous contents

longspace

templateFormat

windowTemplate

 Long—Space for result
	

 Word—Format of window template

 Long—Reference to the input window template

←!SP

previous contents

theWindow
 Long—Pointer to window's GrafPort; NIL if error

←!SP

29

$1A82	 HTMLEventToDisplay
! Allows the user to interact with the optional display window.

Parameters

Stack before call

Stack after call

Errors! $8204! htWindowClosed! Window closed
! $8208! htNotInit! ! HTMLInit has not been called

C	 extern pascal void HTMLEventToDisplay (ptrEventRecord, buffPtr);

! Long! ptrEventRecord, buffPtr

This call uses the EventRecord from the calling application, then returns the same information
as HTMLEventTask, with the results returned in a data buffer pointed at by buffPtr.

On output eventCode and eventValue hold the returned values. Refer to Pages 17-18 for more
details.

buffer 6 bytes:

eventCode ! two bytes
eventValue ! four bytes

HTMLEventTask works with windows opened using HTMLOpenDisplay in a closed loop.
For an application to interact with the window externally, use HTMLEventToDisplay instead.
This allows events to be sent directly to the window from the application. Refer to Page 17
for a description of the returned eventCode and eventValue values.

previous contents

ptrEventRecord

buffPtr

 Long—Pointer to applications EventRecord

 Long—Pointer to 6 byte buffer

←!SP

previous contents

←!SP

30

$1B82	 HTMLGetPage
! Retrieves a file from a web server, and optionally parses it into a TextHandle.

Parameters

Stack before call

Stack after call

Errors! $8202! htBadHandle !! The passed Handle is bad
! $8205! htBadParms! ! Passed data is bad
! $8208! htNotInit ! ! HTML Tool not initialised
! $8209! htNoTCPIP! ! TCP/IP is not installed or not active !
! $820C! htUserKilled ! ! The User stopped the process

C	 extern pascal void HTMLGetPage (appID, dataIn, dataOut);

! Long! dataIn, dataOut

! Word! appID

This call retrieves the file pointed to by the passed URL, and returns the data in a Handle.
The returned data would normally be a web page, but it can also be any file that is held on a
web server. If the URL is prefixed with file:// it will be loaded from a local disk instead.

Optionally, if the tag <html> is found in the returned data, the call can continue and call
HTMLParse to return a fully formatted TextEdit Handle. The returned Text Edit Handle then
only needs to be inserted into the screen display using HTMLInsertTERecord.

With just two Tool calls, HTMLGetPage and HTMLInsertTERecord, you can display a
formatted web page in a web browser, then with HTMLEventTask or HTMLEventToDisplay,
you can interact with that display. Please refer to Pages 17-18 and 29 for more details.

previous contents

←!SP

previous contents
appID

dataIn

dataOut

proxyBlock

 Word— Unique ID derived from Application ID
	

 Long— Pointer to dataIn buffer

 Long— Pointer to dataOut buffer

! Long— Pointer to proxyBlock = null if no proxy required

←!SP

31

dataIn buffer 12, 16 or 22 bytes:
URLHandle ! four bytes ! Handle holding the target URL
webPort! two bytes ! The target port. A value of $0000 = web port $80
inputSettings! two bytes ! Bit 0 = GET return file data in a Handle
! ! Bit 1 = GET return and process into a TextEditHandle
! ! Bit 2 = HEAD returns the full header data in a Handle
! ! Bit 3 = Browser supports Cookies (See Cookies page)
! ! Bit 4 = Return Port & IPAddress from DNS server
! ! Bit 5 = Use the Port & IPAddress from DNS server
! ! Bit 6 = Save Page data to supplied PathName
! ! Bit 7 = Use a Client Thermometer call
! ! Bit 12 = Forces 12pt minimum sized font
! ! Bit 13 = Progress thermometer box at: '3,360,11,510'
! ! Bit 14 = Save debug payload data
! ! Bit 15 = Save debug header data
dataFolder! four bytes ! A pointer!to GS/OS pathname of a data folder
! ! for holding app specific data, or to save page data to (Bit 6)
cookieList! four bytes ! Handle holding list of Cookies to send (Optional)
usePortIPAddress! six bytes ! Use this Port & IPAddress
thermCallPointer! four bytes ! Pointer to a Thermometer data block

dataOut buffer 36, 40, or 46 bytes:
errorFlag! two bytes ! Refer to Page 34
dataFormat! two bytes ! Bit 0 = Handle returned
! ! Bit 1 = TEHandle returned
! ! Bit 2 = File was loaded from disk
! ! Bit 3 = Page data was saved as a file to disk
! ! Bit 14 = No Cache was reported
! ! Bit 15 = <html> found
dataHandle ! four bytes ! Returned Handle or TextEdit Handle
Content-Length! four bytes ! Size of payload data returned from server
Content-Type ! four bytes ! Pointer to pString returned from the header data
Date ! four bytes ! Pointer to pString returned from the header data
Last-Modified! four bytes ! Pointer to pString returned from the header data
Moved-URL! four bytes ! Handle of moved URL (see Page 37)
Extras! four bytes ! Not used for HTMLGetPage
Last-SearchPage-URL! four bytes ! Not used for HTMLGetPage
cookieList! four bytes ! Handle holding list of returned Cookies (Optional)
returnPortIPAddress! six bytes ! Returned Port & IPAddress from DNS server

Note: Returned Handles must be disposed of by the calling application.

HTMLGetPage is a powerful call that allows the HTML Tool to be the core engine of a web
browser. When a URL is passed to the call, and Bit 1 of inputSettings is set, if an <html> tag is
found in the returned data, an HTML formatted Text Edit Handle will be returned. That data
can then be inserted into the TE Control of a display, and can be interacted with to display
further pages, or post the results of any forms on a page. See Pages 17-18 for more details.

32

If you set Bit 2 of inputSettings, the call sends a HEAD command instead of a GET command.
This returns the size, type, and other information from the file, as well as the full header in a
Handle, but not the payload data itself. This is useful if you wish to download files from a
web server, rather than retrieve a web page, as you can first determine if a particular file is
present, and what is size it is. Note that “Chunked” transfers will not return a size.
In most cases, you will want to follow the HEAD call with a full GET call for the same URL.
This would normally involve calling the DNS server twice for the same URL. When making
the HEAD call, if you set Bit 4 of inputSettings, the Port and IPAddress returned from the DNS
server will be returned in the six returnPortIPAddress bytes. If you then set Bit 5 of
inputSettings, and pass these same values back in usePortIPAddress, these values will be used
instead of making a second DNS call with the passed URL. You cannot pass a Port and
IPAddress if you are making a HEAD call.
Note that the dataIn and dataOut buffers are larger if set Bits 4 & 5, so make sure your web
browser client has allowed for that, and also be careful when using this feature that you do
not pass back invalid values, or values that do not relate to the URL you are calling.
Set Bit 13 of inputSettings to display an optional progress thermometer in the Menu bar. The
thermometer will be displayed at position '3,360,11,510', so if you use it, make sure you do
not have any menus displaying in that position.
Note: If the passed URL reports a “300 Moved Permanently” or “302 Moved Temporarily”
Error, the new URL Location will be returned in the Moved-URL Handle.

Proxy Connections
If you use a proxy connection to connect to a web server, pass a pointer in proxyBlock to a
formatted Block holding the URL of your proxy server, and optionally include an alternative
port number, a username, and a password.
Note: If you do not require to use a proxy connection, pass a value of zero for the pointer.
If a pointer is passed, the proxyBlock must contain 773 bytes, even if the pStrings are empty:
! ProxyBlock:

! ! Proxy URL (257 bytes) pString holding the server URL

! ! Proxy Port (word) pass a value of zero for port = 80

! ! Proxy Username (257 bytes) pString holding the userName

! ! Proxy Password (257 bytes) pString holding the password

The Proxy URL must be provided.
The Proxy Port is optional, and if a value of zero is passed, the default Port 80 will be used.
The Proxy Username is optional, pass a zero length pString if it is not required.
The Proxy Password is optional, pass a zero length pString if it is not required.

If a Proxy connection has been requested, and the server requires Authentication, and a user/
pass has not been passed or is incorrect, a popup window will open for them to be entered. If
no user/pass was passed, the HTMLTool will remember the new correct user/pass until the
IIgs is rebooted. It would be up to the user to correct the entry in the calling application so
that did not happen again.

33

Page Authentication
Some web pages may require authentication. In such a case, a popup window opens, with the
Realm identifier as title. Check the “Remember Me” box for the user/pass to be saved to a
“Passwords” file in the dataFolder of the application. The next time that page, or a sub folder
is accessed, the saved user/pass will be used to access it. If you do not check “Remember Me”,
the user/pass will only be remembered for the current session.

HTTPS URLs
HTTPS secure connections are not supported by the TCP/IP stack, so if a URL is passed that
parses out to an HTTPS address, an htBadPath error will be returned.
The application should wherever possible first check it is not passing HTTPS URLs for either
the HTMLGetPage or HTMLPostForm calls, and then respond suitably if an htBadPath error
is reported.
If you are using a Proxy connection, some Proxy servers may allow an HTTPS URL to be
passed. In this case, the Tool will not trap HTTPS URLs, but if the Proxy server cannot handle
it, may return an error if one is passed.

Debug Logs
Optionally you can turn on a Debug log file by setting bits 15 & 14 of inputSettings. Unless
you change the default path using the HTMLSetLogPath call, the Debug file will be saved in
the root directory of your Boot disc, with the name "HTTP.Log".
Set Bit 15 to save the connection handshake headers, and Bit 14 to save the payload data. Set
both Bits 14 & 15 to save both the headers and payload to the debug file.
Note, if you are making an HTMLGetPage HEAD call before a full HTMLGetPage call, you
may wish to clear bits 15 & 14, to avoid seeing the results of the HEAD call in the Debug log.

Save to PathName
If Bit 6 of inputSettings is set, a pointer to a PathName supplied in dataFolder will be used to
create a file to save the incoming page data to, and no data Handle will be returned.
The file will be saved as a data file (FileType $06), and if the file pointed to in PathName
already exists, it will be deleted.
This call is useful if you wish to download a file directly from a web server, as a file of any
size can be downloaded directly to disk without the data being kept in memory in a Handle
during the call.

Client Thermometer
As an alternative to, or in addition to the small menu bar thermometer provided by the
HTMLGetPage call, set Bit 7 of inputSettings, and provide a Pointer in thermCallPointer to a
Data Block in your app to control a Thermometer Control within the app itself:
! Thermometer Data Block:
! ! ThermCtl dc i4'0'! ; Pointer to an update routine in the app
! ! ThermScale dc i2'$015F'! ; thermometer scale
! ! ThermPosition ds 2! ; position passed back in call from Tool

The Control must already exist, and the update routine should only set the Control’s value
using the value passed back in ThermPosition.

34

$1C82	 HTMLPostForm
! Posts Form data to the web server.

Parameters

Stack before call

Stack after call

Errors! $8202! htBadHandle !! The passed Handle is bad
! $8205! htBadParms! ! Passed data is bad
! $8208! htNotInit ! ! HTML Tool not initialised
! $8209! htNoTCPIP! ! TCP/IP is not installed or not active !
! $820B! htGenError! ! GS/OS and general errors
! $820C! htUserKilled ! ! The User stopped the process

C	 extern pascal void HTMLPostForm (appID, buffPtr);

! Long! buffPtr
! Word! appID

This call Posts the data returned when you double-click a submit button within a Form, and
sends it to the target web server. Depending on how the Form was defined, the call will use
either a GET or POST command to send the data.

You can either retrieve the Form number using HTMLEventTask, HTMLEventTask2, or
HTMLEventToDisplay and and pass this number to the call, and let HTMLPostForm handle
the entire process, or alternatively you can manually use the Form number to first retrieve
the two TEHandles using HTMLGetForm or HTMLGetForm2, and pass that data instead.

Note: If a path to a local file on disk is specified for the target URL, the call will fail.

previous contents

←!SP

previous contents
appID

dataIn

dataOut

proxyBlock

 Word— Unique ID derived from Application ID
	

 Long— Pointer to dataIn buffer

 Long— Pointer to dataOut buffer

! Long— Pointer to proxyBlock = null if no proxy required

←!SP

35

The two TEHandles hold the target URL, and the payload data for the Form. Internally, the
HTMLPostForm call uses that data to build the composite URL for a GET command, or the
payload Data for a POST command. Refer to the examples below.

dataIn buffer 24, 28 or 34 bytes:

pageURL! four bytes! Handle holding the target URL
formPort! two bytes! The target port. A value of $0000 = web port $80
formPrefs! two bytes! Bit 0 = GET return file data in a Handle
! ! Bit 1 = GET return and process into a TextEditHandle
! ! Bit 3 = Browser supports Cookies (See Cookies page)
! ! Bit 4 = Return Port & IPAddress from DNS server
! ! Bit 5 = Use the Port & IPAddress from DNS server
! Bit 12 = Forces 12pt minimum sized font
! ! Bit 13 = Progress thermometer box at: '3,360,11,510'
! ! Bit 14 = Save debug headers
! ! Bit 15 = Save debug headers
formNumber! two bytes! Form Number (if zero, the following three parms must be set)
postCode ! two bytes! 'G' or 'P' for GET or POST
formHandle1! four bytes! Pointer to FormURL in TEHandle (Handle will be disposed of)
formHandle2! four bytes! Pointer to FormData in TEHandle (Handle will be disposed of)
dataFolder! four bytes! A pointer to GS/OS pathname of a data folder
! ! for holding app specific data
cookieList! four bytes! Handle holding list of Cookies to send (Optional)
usePortAddress! six bytes ! Use this Port & IPAddress
On entry, you must set formPort, formPrefs, and the pageURL, then either formNumber, or
postCode, formHandle1, formHandle2 and dataFolder.

dataOut buffer 36, 40 or 44 bytes:

errorFlag! two bytes ! See below
dataFormat! two bytes ! Handle, TEHandle, No Cache, <html> found (see Page 31)
dataHandle ! four bytes ! Returned Handle or TextEdit Handle
Content-Length! four bytes ! Pointer to pString returned from the header data
Content-Type ! four bytes ! Pointer to pString returned from the header data
Date ! four bytes ! Pointer to pString returned from the header data
Last-Modified! four bytes ! Pointer to pString returned from the header data
Moved-URL! four bytes ! Pointer to Handle of moved URL (see Page 37)
Extras! four bytes ! loWord 'P' or 'G' depending on how call was POSTed
! ! hiWord the number of the Form that was POSTed
Last-SearchPage-URL! four bytes ! Pointer to GS/OS String of last page and search Payload
cookieList! four bytes ! Handle holding list of returned Cookies (Optional)
returnPortIPAddress! six bytes ! Returned Port & IPAddress from DNS server

36

Errors returned in errorFlag if an error on the stack is htGenError:
! $0001 = Bad Connection
! $0002 = No response
! $0004 = Bad response
! $0008 = GS/OS error file error or would not open
! $0010 = GS/OS write error
! $0020 = GS/OS volume full
! $0040 = TCP/IP DNR abort error
! $0xxx = HTTP error (lower 12 bits hold a value such as a '404' page not found error)
! $8000 = User killed/User stopped
The calling application must dispose of the dataHandle Handle when it has finished with it.
Note: A Handle with the URL of the current page should be passed in pageURL. If a URL was
not found within the Form data, this URL will be used to POST the data. If you know that a
valid URL is being supplied in formHandle1, then you need not also pass it in pageURL.
Note: Any payload data will be returned in a Handle, or optionally if it contains HTML code,
be processed into a TEHandle. Display a TEHandle in the main TextEdit control of your
display window using HTMLInsertTERecord, or if not already processed, you can first
process a Handle of HTML data using HTMLParse before calling HTMLInsertTERecord.

Method One
The simplest way to use the HTMLPostForm call is to copy the Form number returned from
HTMLEventTask, HTMLEventTask2, or HTMLEventToDisplay into formNumber, and add the
page URL. A GET or POST call will then be automatically made.
On return, Extras will hold either a 'G' or 'P', depending on the actual call that was made.
The dataHandle will hold either a raw data Handle, or the processed TEHandle of the page
depending on what you asked for in Bits 0 and 1 of formPrefs, and what was returned.
As a check for an <html> tag is always made before any automatic processing of the data into
a TEHandle, dataFormat will tell you what kind of Handle was returned, regardless of what
you had asked for in formPrefs.

Method Two
This method gives you considerably more control of the form Posting process. In this case,
formNumber must be set to zero. You must set postCode with either a 'G' or a 'P' for Get and
POST, and must supply the required URL, and the form data in the two TEHandles,
formHandle1 and formHandle2.
TEHandle formHandle1 holds the target URL, and TEHandle formHandle2 the actual Form
data. This data can be retrieved using the Form number and HTMLGetForm, or
HTMLGetForm2, or as you have control of both of these two TEHandles, if necessary, you
can change or build the data in formHandle2 before making the call.
If the call is a GET call, then HTMLPostForm will construct the URL correctly from the two
TEHandles. For a POST call, formHandle2 will be sent as the payload.

37

As with Method One, any returned page will be returned in dataHandle and the type of
Handle in dataFormat.

Moved-URL - Moved Permanently Error
If the passed pageURL results in a “301 Moved Permanently” or “302 Moved Temporarily”
response, the new Moved-URL is returned to the HTMLGetPage and HTMLPostForm calls.
It is up to the calling application to check for a Moved-URL from either of the calls.
If a Moved-URL is returned, the application can retrieve the new URL from the Handle. The
application can then offer the new URL to be passed once again to either of the calls.

Proxy Connections and Page Authentication
Refer to Page 32 for further details.

Using the returned DNS server IPAddress
In most cases, you will want to follow a HEAD call with a full GET or POST call for the same
URL. This would normally involve calling the DNS server twice for the same URL. When
making the HEAD call, if you set Bit 4 of inputSettings, the Port and IPAddress returned from
the DNS server will be returned in the six returnPortIPAddress bytes. If you then set Bit 5 of
inputSettings, and pass these same values back in usePortIPAddress, these values will be used
instead of making a second DNS call with the passed URL. You cannot pass a Port and
IPAddress if you are making a HEAD call.
For a POST call, it will probably be less useful to have it return the returnPortIPAddress Port &
IPAddress, but if you have made a HEAD call before the POST call, then you can use the
results from that with the POST call, to save the DNS server from being called once more.
Note that the dataIn and dataOut buffers are larger if set Bits 4 & 5, so make sure your web
browser client has allowed for that, and also be careful when using this feature that you do
not pass back invalid values, or values that do not relate to the URL you are calling.

38

$1D82	 HTMLCacheControl
! Allows the user to save and recover pages complete with Form data.

Parameters

Stack before call

Stack after call

Errors! $8204! htWindowClosed! Window closed
! $8205! htBadParms! ! Bad values supplied
! $8208! htNotInit! ! HTMLInit has not been called
! $820A! htBadPath! ! Prefix 8 invalid

C	 extern pascal void HTMLCacheControl (buffPtr);

! Long! buffPtr

buffer 283 bytes:

resultCode ! word! ! ! ! If full Save/Restore/Update = $8000
taskCode ! word! ! ! ! required task
cacheNumber! thirteen bytes! ! ! name of cache file: ‘C123456789123’
cacheFlags! word! ! ! ! Bit 11 = Save full pages (see No Cache section)
! ! ! ! ! ! Bit 12 = Page returned from Post call
! ! ! ! ! ! Bit 13 = Server requested password
! ! ! ! ! ! Bit 14 = Server requested No cache
! ! ! ! ! ! Bit 15 = Short cache application request
userFlags! long! ! ! ! optional flags for use by application
pageLength! long! ! ! ! Size of payload data returned from server
cacheURL! 256 bytes ! ! ! ! used for Save/Restore

Note: Before entry to the Cache call, the application must set Prefix 7 to point to the folder
that will hold the Cache files.

previous contents

buffPtr
 Long—Pointer to 283 byte buffer

←!SP

previous contents

←!SP

39

The HTMLCacheControl call handles the saving of the cacheURL along with various flags and
values, and the complete text and style content of the page, along with any Form data from
the page into a full cache file. Optionally, you can save just the cacheURL and flags as a short
cache file. This call enables a cache and navigation strategy for your application, and aids
restoring pages from a navigation stack, along with changes that may have been made to any
embedded Forms, without needing to retrieve the page again from the web server.

The filenames used for the files in the Cache folder are unique, and must not be changed by
the application. They are constructed from the current date and time, so there will never be a
duplicate file of the same name created. They have a ‘C' at the start to allow the unique
numeric name to be accepted by GS/OS.

taskCode:	 $01 = Save current page to cache folder
! $02 = Update current page in cache folder (updates data only)
! $03 = Restore page from cache folder
! $04 = Remove page from cache folder
! $05 = Remove All pages from cache folder
! $06 = Clean No Cache pages (see No Cache section)
! set bit 15 to save page to passed cacheNumber (saves as new page)

Working with the Cache call
When you have downloaded, Parsed, and Inserted your page into the TextEdit control of the
optional or custom window, call HTMLCacheControl to Save the current page to a Cache file,
so you can quickly recall the page later. Make a note of the cacheNumber that was returned in
your History or Navigation list, and when you wish to show the page again, use that
cacheNumber to Restore the page. This will allow you to quickly display a page from the
Cache without having to download and Parse the page once more.

When you move away from that page, either by calling up a new URL, or when your
application Quits, use the Update call to keep an updated copy of the page using the same
cacheNumber. This will preserve any changes you may have made to a Form entry.

If you remove an entry from your History list, call the Remove Page call using the
cacheNumber to clear the related file from the cache folder. If you wish to empty the entire
folder, use the Remove All call.

Note: If a page was marked as “No Cache” by the server, you should respect that by setting
Bit 14 of the cacheFlags when you Save or Update the page. Refer to the No Cache section.

Save Current Page = 1
Saves the cacheURL and userFlags, text, style, and Form data from a page to a cache file. The
filename is built using a unique number, and returns that unique number for the file in
cacheNumber. Make a note of that number in your navigation stack for later recall.

If Bit 15 of cacheFlags is set, only the cacheURL and Flags will be saved. This allows for shorter
cache files, but when Restored, the page will need to be retrieved again from the server.

40

If Bit 15 of taskCode is set, you must supply the cacheNumber on entry. The data will then be
saved to that file. This allows you to preserve you navigation history stack, and save any
changes back to the same cache file.

Update Current Page = 2
Updates the Form data from a page, using the number passed in cacheNumber. This will
update the cacheURL, userFlags and Form data. If a short cache had been saved, only the
cacheFlags will be updated. If it had been a full cache file, and is now Updated as a short
cache file, the page and form data will be removed from the cache file.

Restore Page = 3
Loads the page from disk using the number passed in cacheNumber, and replaces the current
display with the saved page data. Any Form data will be restored. If a short cache had been
saved, the page itself will need to be retrieved, parsed, and redrawn again.

Remove Page = 4
Deletes the saved page from the Cache folder using the passed cacheNumber.

Remove All Pages = 5
Deletes all the Cache files from the Cache folder.

Clean No Cache Pages = 6
If you have chosen to save full pages from those marked as “No cache” by the server, you
must call this at Quit to strip the text and form data from any marked “No Cache” pages.

User Flags
The four byte long word userFlags is saved and restored to and from the cache file. The
calling application can use these bytes as they wish, perhaps to store data or flags related to
the page, such as the cursor position.

No Cache Page Handling
Some servers may request that you do Not Cache their pages, and it is up to the browser to
respect this request by first checking Bit 14 of the returned cacheFlags, and then setting Bit 14
again in the cacheFlags whenever you Save or Update that page. However, if the IIgs is not
accelerated, this can cause some long delays for a page to be downloaded again as you go
back and forwards through your navigation stack.

To allow a browser to behave more responsively for No Cache pages, set Bit 11 as well as Bit
14 of the cacheFlags when you Save or Update a requested No Cache page, and they will then
be saved as full cache pages to the cache files instead of short cache pages.

If you have saved any No Cache pages as full cache files, it is important that when your
browser Quits, you call HTMLCacheControl with taskCode = 6. This will strip the text and
form data from any No Cache pages, and so convert them back into short cache pages. This
will respect the servers wish that you do not permanently cache those pages.

41

The Cache File structure:

! Cache File:
! ! Offset to start of RefHandles (long)
! ! cacheFlags (word)
! ! ! Bit!0 = If set a File://
! ! ! Bit 11 = Save pages as full caches (See No cache section)
! ! ! Bit 13 = Server required password (server request)
! ! ! Bit 14 = Server requested No Cache (Server request)
! ! ! Bit 15 = Short Cache (Application request)
! ! userFlags (long) - for use by application
! ! length of page retrieved from server (long)
! ! page URL (pString 256 bytes)
! Long cache section extends here:
! ! TESelection (8 bytes)
! ! length TEText (long)
! ! TEText from control
! ! length Style info (long)
! ! Style Info from control
! ! Form Active flag (word)
! ! Number of RefHandles (long) then
! ! ! length of RefHandle (long)! pair 1
! ! ! data from RefHandle! ! pair 1
! ! ! length of RefHandle (long)! pair 2
! ! ! data from RefHandle! ! pair 2
! ! ! etc.

The Form RefHandles hold any entries you may have made to forms on a page, so when the
page is later restored, that data will be restored as well as the page itself.

42

$1E82	 HTMLSetTextTERecord
! Replaces the text of a TERecord in the optional display window.

Parameters

Stack before call

Stack after call

Errors! $82-2! htBadHandle! Invalid TERecord
! $8204! htWindowClosed! Window closed
! $8206! htNoData! ! The TERecord is empty
! $8208! htNotInit! ! HTMLInit has not been called

C	 extern pascal void HTMLInsertTERecord (teH);

! Long! teH

This call is similar to HTMLInsertTERecord, but instead of inserting the text at the end of the record, it
replaces the entire text with the contents of the passed TERecord. This saves first calling
HTMLClearDisplay if you are replacing the entire contents of the display.

Note: The calling application must Kill the passed TERecord after the call.

previous contents

teH
 Long—Handle to TERecord

←!SP

previous contents

←!SP

43

$1F82	 HTMLFindString2
! Finds the next occurrence of ‘String’, searching from the current cursor position.

Parameters

Stack before call

Stack after call

Errors! $8204! htWindowClosed! Window closed
! $8207! htFailed! ! ‘Name’ String not found
! $8208! htNotInit! ! HTMLInit has not been called
! $82FF! htBadCall! ! Incorrect parameters supplied

C	 extern pascal Long HTMLFindString (stringPointer);

! Long! position, stringPointer

This is similar to the HTMLFindString call, but allows you to specify the target TextEdit control,
whether the search is case sensitive, and whether hidden text using the SIS-4 font is also searched.
Note: If the target string is found, the text will be selected, and scrolled to place it in the middle of the
screen.

previous contents

position
 Long— Cursor position; next character offset in the TERecord

←!SP

previous contents

longspace

stringPointer

teH

findFlags

 Long—Space for result

! Long—Pointer to a String (bytelength + text)

! Long—Handle to TERecord

! Word—Flags
! ! Set Bit 0 for case sensitive searches
! ! Set Bit 1 to include hidden font SIS-4 in search
 ←!SP

44

$2082	 HTMLExtractText
! Extracts and prepares text from a TERecord for Printing.

Parameters

Stack before call

Stack after call

Errors! $8202! htBadHandle ! ! A bad Handle was supplied

C	 extern pascal Long HTMLExtractText (flags, textLength, teH);

! Long! textLength, teH

! Word! flags

Web pages built using the HTML Tool, may contain any of the five special SIS fonts, and may also
contain hard spaces. These fonts can cause problems when printing, either with characters that cannot
be printed, or that unsuitable substitution fonts have to be used. By running the text through the
HTMLExtractText call before printing, the problem fonts can either be ignored, or be changed to
printable fonts, with hard spaces turned into normal spaces.

In addition, the HTMLExtractText call is able to process text to change coloured fonts to black and
white, to force a single 10pt size, to strip font attributes, or to force the Shaston or Courier font.

previous contents

longspace

flags

textLength

teH

 Long—Space for result
	

 Word—Flags to indicate how to process the text

 Long—Maximum length of output text (default = 0)

 Long—Handle to input TERecord

←!SP

previous contents

outputHandle
 Long—New Handle or TERecord

←!SP

45

The SIS font set: !SIS-1 ! proportional serif font
! SIS-2 ! mono spaced serif font
! SIS-3 ! icon font
! SIS-4 ! hidden/invisible font
! SIS-5 ! over/underlined button font
! SIS-6 ! proportional sans-serif font
! SIS-7 ! mono spaced sans-serif font

The flags:! Bit 0! Set to return text in a plain Handle
! Bit 1! Set to strip coloured text to black on white
! Bit 2! Set to strip font attributes to plain
! Bit 3 ! Set to change all font sizes to 10 pt
! Bit 4! Set to change all fonts to Helvetica
! Bit 5! Set to change all fonts to Courier
! Bit 6! Set to strip SIS-3 & SIS-4 fonts, and change others to printable fonts
! Bit 7! Change any Hi-ASCII characters to $20 printable spaces
! Bit 9! Strip any text in the SIS-6 proportional sans-serif font
! Bit 10 ! Strip any text in the SIS-7 mono-spaced sans-serif font
! Bit 11! Strip any text in the SIS-1 proportional serif font
! Bit 12 ! Strip any text in the SIS-2 mono-spaced serif font
! Bit 13 ! Strip any text in the SIS-3 icons font
! Bit 14 ! Strip any text in the SIS-4 hidden font
! Bit 15 ! Strip any text in the SIS-5 button font

Using the call:
! pha
! pha
! PushWord Flags
! PushLong Length !! ! max length of text to return 0 for all
! PushLong TEControlHandle! Handle to TE control record to extract from
! _HTMLExtractText!!
! PullLong ReturnedHandle! Handle or TEHandle of returned massaged text

To use the call, set flags appropriately, and pass the Handle of either a TextEdit control, or a TextEdit
Record. On output, a TextEdit Record or Handle will be returned. This Handle can then be passed to
your Print routine.
All the text from the input TextEdit control or TERecord will be processed. If you wish to only process
selected text from a TE control, you must first extract that text and pass it in a new TERecord. Any
hard spaces in the text $CA, will be translated into normal printable spaces $20.
Specify either the maximum length of output text you require, or pass a zero value to return all the
usable input text to the output.
For a web page, the minimum setting for flags would be $0040, which would strip the SIS-3 icon and
SIS-4 hidden fonts, and change any other fonts into suitable printable fonts.
During the processing, Bits 9-15 of the flags (the seven strip flags) are processed first, followed by Bits
1-5, then Bit 6-7. This allows you to control precisely what will happen during the extraction.
The default output is to return a TE Record, which holds font information and styles, but optionally
you can return just the plain text content in a Handle.
On return, the input TEHandle will be left untouched, but the calling application is responsible for
disposing of the returned TE Record or plain Handle when it has finished with it.

46

$2182	 HTMLWriteToLog
! Allows a client to add comments or other text data to the Debug Log file.

Parameters

Stack before call

Stack after call

Errors! None

C	 extern pascal void HTMLWriteToLog (buffPtr);

! Long! buffPtr,! Word! appID

The sole purpose of this call, is to allow web clients to add custom entries into the Debug Log file,
such as details of Cookies that may have been deleted, or other actions the client may have taken.

dataIn buffer 26 bytes:

textFormatFlags! two bytes! Flags controlling behaviour of the call
line1Length! two bytes! Length of Line 1
line1Pointer! four bytes! Pointer to text for Line 1
line2Length! two bytes! Length of Line 2
line2Pointer! four bytes! Pointer to text for Line 2
line3Length! two bytes! Length of Line 3
line3Pointer! four bytes! Pointer to text for Line 3
line4Length! two bytes! Length of Line 3
line4Pointer! four bytes! Pointer to text for Line 4

If the length of any of the four lines is zero, then nothing will be written for that line. If the
textFormatFlags is zero, and all the line lengths are zero, then nothing will be written to the
file. Note that CRs are not printed automatically to the end of any of the lines, so if required,
you will need to add those to the passed lines. Always add a double CR at the end of the text,
either in your last line, or by setting Bit 14 of the textFormatFlags.

previous contents

appID

buffPtr

 Word— Unique ID derived from Application ID
!
! Long— Pointer to dataIn Buffer

←!SP

previous contents

←!SP

47

Defining the textFormatFlags bits:
! ! Bit 0 = set for marker [S]
! ! Bit 1 = set for marker [R]
! ! Bit 2 = set for marker [F]
! ! Bit 3 = set for marker [D]
! ! Bit 4 = marker precedes text on line 1
! ! Bit 5 = marker precedes text on line 2
! ! Bit 6 = marker precedes text on line 3
! ! Bit 7 = marker precedes text on line 4
! ! Bit 13 = Single CR spacer at end of last line
! ! Bit 14 = Double CR spacer at end of last line
! ! Bit 15 = Divider line added at start of the entry

The Debug Log file uses an [S] marker to show whether data is being sent to a host server, or
[R] if data is being received from a host server. You can precede your own lines with either an
[S], [R], [F], or [D], by setting Bits 0-3 of textFormatFlags, then set Bits 4-7 to define which lines
will have that marker applied. If the Bits 0-3 are zero, then a space [] marker will be printed.
Note that you must set either Bits 0, 1, 2, or 3, as the first marker to be set will always take
precedence. If you wished to have different markers on each line of text, then you will need to
make further calls to HTMLWriteToLog for each of the different markers.
If you have not included CRs at the end of the last line of text to be printed, then set Bits 13 or
14, to add either a single or a double CR at the end of all the lines of text.
Set Bit 15 if you wish to have the standard Debug Log divider line inserted at the very start of
the text before any of the four possible text lines are printed.

This is an example of an HTMLTextToLog call, where an expired cookie has been deleted, and
the client has shown the details using the HTMLTextToLog call:

[S] POST /test.php HTTP/1.1
User-Agent: Mozilla/2.0 (Compatible; Tool130; IIgs)
Host: test.com
Cookie: name=Steve
Content-Type: application/x-www-form-urlencoded
Content-Length: 25

[R] HTTP/1.1 200 OK
[R] Content-Type: text/html; charset=UTF-8
[R] Transfer-Encoding: chunked
[R] Connection: keep-alive
[R] Keep-Alive: timeout=15
[R] Date: Wed, 25 Aug 2021 10:47:30 GMT
[R] Server: Apache
[R] Set-Cookie: name=Steve; expires=Wed, 25-Aug-2021 10:52:31 GMT; Max-Age=300
[R]

Cookie: K061261FBA01
Sent from: test.com was deleted

48

$2282	 HTMLSetLogPath
! Sets the pathname that will be used for writing the Debug Log file.

Parameters

Stack before call

Stack after call

Errors! $8207! htFailed ! ! All 16 pathName slots are full
! $xxxx! GS/OS errors! ! The pathName was bad

C	 extern pascal void HTMLSetLogPath (buffPtr);

! Long! pathName

! Word! appID, function

For the HTMLGetPage, HTMLPostForm, and HTMLWriteToLog calls, the default is to save
the Debug data to an HTML.Log file in the top directory of the Boot drive.
The HTMLSetLogPath call allows a web browser to change that default pathname if required.
Only the pointers to the pathnames are stored in the Tool, so if a passed pathname is invalid,
or becomes invalid at any point, the call will default to writing to the top level of the Boot
drive as before.
Up to 16 separate pathname pointers can be stored, and these are linked by the appID passed
in the call. This allows a browser to set up multiple pathnames for different purposes, by
using different appIDs when calling HTMLSetLogPath, and then using those same appIDs for
the HTMLGetPage, HTMLPostForm, and HTMLWriteToLog calls.
Set function to true when setting a path, and when your web browser Quits, or you are
finished with that path, clear the entry by calling HTMLSetLogPath again with the same
appID, and function set to false. Set the pathname pointer to zero when clearing the entry.

previous contents

appID

pathName

function

 Word— Unique ID derived from Application ID
!
! Long— Pointer to pathName

! Word— True = Set the path, False = Clear the path

←!SP

previous contents

←!SP

49

Cookies
The HTML Tool can optionally handle Cookies that are received, and then send them back to
the Host as required. If the calling browser supports Cookies, set Bit 3 of the inputSettings or
formPrefs flag, and make sure that the appropriate dataIn and dataOut buffers have the extra
four bytes at the end to hold the Handles to be passed back and forth.
For the HTMLGetPage and HTMLPostForm calls, if Bit 3 of the inputSettings or formPrefs flag
is set, the HTML Tool will return any Cookies it receives from the server in the Incoming
Handle. If the Incoming Handle value is zero, then no Cookies were returned.
For the HTMLGetPage and HTMLPostForm calls, if Bit 3 of the inputSettings or formPrefs flag
is set, and a valid Handle is supplied in cookieList, the contents of the Handle will be sent
along with the Header data to the server. If a Handle value is zero, no Cookie will be sent.
Note: Cookies are not sent if the HEAD only flag has been set for the HTMLGetPage call.
Apart from the Host URL that will be added to the start of the Incoming Handle, no
processing of the Cookie data is made by the HTML Tool before returning any Cookies that
have been received. It will be up to the browser to process the Incoming Cookies
appropriately, and to then send them back correctly formed as and when required.
The browser must delete the Incoming Handle when it has finished with it, keeping the
Cookie data as required. The HTMLTool deletes the Outgoing Handle after it has been sent.

Incoming Handle
hostURL! pString! Host URL pString terminated with a CR
cookie1! data ! each Cookie is terminated by a CR
cookie2! data ! etc.
The browser must remove and appropriately evaluate any attributes in the Cookie before
constructing the outgoing Handle to be sent back.
For example, if five Cookies were received from the host, the returned Handle contents might
look like this. Note that each Cookie is separated by a CR, and there is also a trailing CR:
<host-name pString>CR<cookie1-name>=<cookie-value>CR<cookie2-name>=<cookie-value>;
Expires=<date>CR<cookie3-name>=<cookie-value>; Max-Age=<number>CR<cookie4-
name>=<cookie-value>; Domain=<domain-value>CR<cookie5-name>=<cookie-value>;
Path=<path-value>CR

Outgoing Handle
cookie1! data ! Cookie is terminated by ‘; ‘ semicolon and space
cookie2! data ! etc.

If the five Cookies above were being sent back, this example shows the data in the outgoing
Handle. Note the hostURL has been removed, and each Cookie has a trailing ‘; ‘ (semi-colon
and space) separating it from the previous Cookie. There is no trailing ‘; ‘ at the end:
<cookie1-name>=<cookie-value>; <cookie2-name>=<cookie-value>; <cookie3-
name>=<cookie-value>; <cookie4-name>=<cookie-value>; <cookie5-name>=<cookie-
value>

50

Example of posting a form
HTML Code:

<!-- Form which will send a POST request to the current URL -->
<form method="post">
 <label>Name:
 <input name="submitted-name" autocomplete="name">
 </label>
 <button>Save</button>
</form>

Screen Display:

!

!

HTTP POST transcript data sent:
POST /speccie/downloads/sample.html HTTP/1.1
User-Agent: Mozilla/2.0 (Compatible; Versions 1.0; IIgs)
Host: speccie.uk
Content-Type: application/x-www-form-urlencoded
Content-Length: 47

submitted-name=This+is+a+test+of+Posting+a+form

Data returned:
HTTP/1.1 200 OK
Date: Tue, 19 May 2020 17:47:16 GMT

<html><body>
The requested page will be returned here. The server may have changed the data.
</body></html>

HTTP GET transcript of the same data sent:
GET /speccie/downloads/sample.html? submitted-
name=This+is+a+test+of+Posting+a+form HTTP/1.1
User-Agent: Mozilla/2.0 (Compatible; Versions 1.0; IIgs)
Host: speccie.uk
Pragma: no-cache
Accept: */*

Data returned:
HTTP/1.1 200 OK
Date: Tue, 19 May 2020 17:47:16 GMT

<html><body>
The requested page will be returned here. The server may have changed the data.
</body></html>

http://speccie.uk/
http://speccie.uk/

51

Rolling your own Web Browser

With the addition of the new HTMLGetPage call, and the existing HTML Tool calls, you can
now painlessly build your own web browser. Refer to each call for further details.

First build a window template that has a TextEdit Control with the ID $7000, and pass a
pointer to this template to HTMLOpenDisplay2 (Page 28). This will open the interactive
window that will display the incoming pages. As well as any other controls you have in the
template, optionally you can include a Stop button or Stop icon button with the ID $8000.

Now pass a valid target URL to HTMLGetPage (Page 30), and pass the returned
TextEditHandle to HTMLInsertRecord (Page 16).

That's all there is to it. You have now retrieved and displayed a parsed <html> page into your
very own Web Browser!

In a doModalWindow loop, whenever you detect a double-click, call HTMLEventToDisplay
(Page 29), and process the returned event according to the values you see (Page 18). It could
be a link to another page, or a Form button that had been double-clicked. If it was another
page, just call HTMLGetPage and HTMLInsertRecord again, but if it was a Form button, then
call HTMPostForm with the Form number (Page 32).

If you are keeping a navigation history stack, use the HTLCacheControl call to Save, Update,
Restore or Kill, pages from your Cache folder.

Of course you will need to add considerable supporting code in addition to those calls, but
that is true of any application you may write. To give you an example of what can be done
with these few calls, please checkout the Webber browser. This is a powerful web browser
that was built to test out the new calls, and was built exactly as I have described above!

52

Using the HTML Color tags

The HTML Tool supports two Font tags that can control the color of the text and its background.

Use the tags in this way, remembering to balance each tag with its corresponding end tag:

! This text will be in Red
! Black text with a Yellow background
! Blue text with a Lightgreen background
!

The 16 IIgs colors are mapped to these HTML tag colors:

black ! ! = black
blue ! ! = blue, navy
darkgeen ! = darkgreen, olive
darkgray ! = darkgray, gray
red ! ! = red, maroon
lilac ! ! = lilac, purple
orange ! ! = orange
pink ! ! = pink, fuchsia
green ! ! = green, lime
aqua ! ! = aqua, cyan
lightgreen != lightgreen, chartreuse
lightblue ! = lightblue, teal
lightgray ! = lightgray, silver
periwinkle != cornflowerblue
yellow ! ! = yellow
white ! ! = white

Note: Due to the limitations of the SHR display, not all the
colors will be easily readable unless the size is increased using
one of the Headline tags, or using the Bold tag.

Experiment with the colors using Spectrum™, by adding
an .HTM suffix to the file, and opening the file in the
Spectrum™ Editor by choosing to display as HTML.
Alternatively, if the text file holds an <html> tag, you will be
given the choice to open as HTML, without the suffix.

53

Using the HTML Custom tags
The HTML Tool supports custom tags to support the SIS font set, playing System sounds, and
speaking text with the ByteWorks Talking Tools.

You can play a system sound when the icon button is clicked by including the name of the system
sound in a line such as this:
<object sis-sound=”Trumpets”> Lets’s hear it for Webber... </object>

To play talking text, you must have the speech Talking Tools installed. You can obtain the Talking
Tools, along with other ByteWorks software, on the OPUS][disk from the Juiced.GS Store:

https://juiced.gs/store/opus-ii-software/

Include the text within the object tag, and add an optional description before you close the tag:
<object sis-speech="They said this Brauwserr could not be done.">Welcome to
Webber</object>

You can control the voice timbre with additional commands:
<object sis-speech="Text" gender="female">Description</object>
<object sis-speech="Text" gender="male"Description</object>
<object sis-speech="Text" pitch="1" speed="1" tone=”1”>Description</object>

You may need to experiment with these settings for the best results, and remember that an accelerated
or emulated IIgs may sound very different to a standard speed IIgs.

To display text directly using the seven custom SIS fonts, use tags <f1> to <f7>. Apart from the size
attribute, these tags work in the same way as the tag, so close them with :

<f1>Set the SIS proportional serif font
<f2>Set the SIS mono-spaced serif font
<f3>Set the SIS symbol font
<f4>Set the SIS invisible font
<f5>Set the SIS over/underlined button font
<f6>Set the SIS proportional sans-serif font
<f7>Set the SIS mono-spaced sans-serif font

It is suggested you use a font editor to see what the SIS fonts will actually display, and for the symbol
font, which ASCII value is needed for the symbol you want to use.

If you can’t use the required character or symbol directly within the text, use the Ampersand function,
with a value of 256 added to the ASCII value, to display the required character:

EG: Ł will print a capital A, as the ASCII value of A is 65, so with 256 added, we get 321.

https://juiced.gs/store/opus-ii-software/
https://juiced.gs/store/opus-ii-software/

54

Links
To obtain the HTML Tool Set, and any of my other software:

http://speccie.uk

To subscribe to the Juiced.GS magazine:
http://juiced.gs/

To read all about the annual KFest conference:
http://www.kansasfest.org/

HTML Tool Set error codes

$8201! htNoFonts! Required fonts not installed
$8202! htBadHandle! Bad Handle value supplied
$8203 ! htWindowOpen! Display window already open
$8204! htWindowClosed! Display window already closed
$8205! htBadParms! Bad parameters were passed
$8206! htNoData! Data was not present when expected
$8207! htFailed! The call failed to execute
$8208! htNotInit! HTMLInit has not been called
$8209! htNoTCPIP! TCP/IP not installed
$820A! htBadPath! A bad URL was provided
$820B! htGenError! General error with online calls
$820C! htUserKilled! User stopped process!
$82FE! htNoTools! Required Tools not installed
$82FF! htBadCall! The call failed through bad Data

Errors returned if main error is htGenError:

! $0001 = Bad Connection
! $0002 = No response
! $0004 = Bad response
! $0008 = GS/OS error file error or would not open
! $0010 = GS/OS write error
! $0020 = GS/OS volume full
! $0040 = TCP/IP DNR abort error
! $8000 = User killed/stop

http://speccie.uk
http://speccie.uk
http://juiced.gs
http://juiced.gs
http://www.kansasfest.org
http://www.kansasfest.org

