Spectrum Version 2.0 through 2.5.3
Addendum
This document describes what’s new in Spectrum versions 2.0 through 2.5.3. If you are upgrading from Spectrum v2.1 or later, refer to Spectrum’s online !Help! topic “Changes in Spectrum v2.5.3” and “Changes in Scripting v2.5.3” to learn about all the bug fixes and program feature changes made in the v2.2 through v2.5.3 updates.

Significant changes to Spectrum’s scripting language were made in the v1.0 to v2.0 update, and additions were made in the Spectrum v2.1, v2.2, v2 and v2.4 updates. Bug fixes were made in the 2.5.2 and 2.5.3 updates. Rather than listing those changes on disk and having three separate script references, the changes have been repeated in this addendum. This also gives us an opportunity to correct an oversight in the v2.0 addendum…this addendum includes an index!

Spectrum is no longer distributed by My eSource, formerly Seven Hills Software. All sales are now handled by Syndicomm™. The references to Seven Hills in the ‘Getting Started’ and ‘Scripting’ manuals have been retained, as these reflect the status of Spectrum when those two manuals were first printed.

<http://www.a2central.com>
visit our web site for the gateway to your Apple][world!

 <speccie@btopenworld.com>
please direct all technical support questions
to this email address

<http://www.ewannop.btinternet.co.uk/>
visit the Spectrum web site keep in touch with
 our latest updates!

Table Of Contents

Installation

Installation Instructions
1

Feature Changes

Feature Changes
6

7

General Changes & Bug Fixes

� (Apple) Menu
11

File Menu
12

Open
12

Save
13

BabelFish™
13

Send/Receive
14

Launch
15

Quit
15

Edit Menu
16

Paste
16

Paste As Reply
16

Find/Replace
16

Signature
16

Show Menu
17

Online Display
17

Editor
17

Clipboard
18

Chatline
18

Phone Menu - TCP/IP Menu
19

Dial Number - Services
19

Hangup - Connect - Disconnect
20

Switch to TCP/IP - Switch to Serial
20

Answer Back - Logout
20

Service Items
20

Script Menu
21

Learn a Script
21

Menu Files
21

Settings Menu
22

Online Display
22

ANSI
22

Options
23

External Commands (XCMDs)
25

TCP/IP
26

TCP/IP Menu
27

Services
27

Service Entries
27

Login
27

Telnet
27

Connect - Disconnect
28

Send Break
28

Switch to Serial
28

Close Connection
28

Connections
29

Script Language Changes

Script Language Changes
30

General
31

Specially-Treated Characters
32

$ (Replacement Items)
32

Parameters
43

VarNum becomes Varname
43

String
45

Script Development
46

Fundamental Commands
48

Settings
53

Online Display Settings
54

File Transfer Settings
55

Dialing
58

TCP/IP Commands
59

Script and Program Control
65

Variables
67

Getting Input
73

Branching and Loops
76

Conditional Tests
79

Screen Appearance
82

Capture Buffer Control
84

Transferring Files
85

OS Utilities
86

Reading and Writing Files
90

Reading Catalogs
92

Script Editor
93

Error Control
96

Script Interpretation
97

Advanced Commands
98

Specialty Commands
105

Index

Notes

Installation Instructions

If you are a new owner of Spectrum: Follow all the installation instructions in the Getting Started and Reference manual. If you install Spectrum sounds you should also run the “SoundPatch” utility to add some new sound events into the Sound CDEV.

If you purchased the floppy disk version of Spectrum v2.2, you will need to order the Spectrum v2.5.3 Updater from Syndicomm™:

<http://www.a2central.com>

To learn about most of Spectrum, read the Getting Started and Reference manual. Once you are familiar with the original Spectrum features you can then read the “New or Changed Program Features” section below to find out what’s new in version 2.0 or later. Likewise, when you begin writing scripts you should read the Scripting manual to learn about the original Spectrum features, then read the “Script Language Changes” section below to learn what’s new in version 2.0 onwards.

If you purchased Spectrum version 2.2 on floppy disk:


Insert the original Spectrum Install disk.


Run the Installer, and when you are asked to do so, type your full name then click the OK button.

When personalization is complete, Apple’s Installer is launched automatically.


After installation, locate the Spectrum 2.5.3 updater archive, and run the Install script to update from Spectrum v2.2 to Spectrum v2.5.3.

If you purchased Spectrum version 2.5.3 on floppy disk:


Insert the original Spectrum Install disk.


Run the Installer, and when you are asked to do so, type your full name then click the OK button.

When personalization is complete, Apple’s Installer is launched automatically.

If you purchased the CD version of Spectrum version 2.5.3:


Drag the Spectrum folder to your hard drive to make the ‘Spectrum.2.5.3’ folder.


Run the Installer, and when you are asked to do so, type your full name then click the OK button.

When personalization is complete, Apple’s Installer is launched automatically.
If you will use Spectrum on a hard disk drive:

Skip to the next page if you use Spectrum with 3.5" disks.


Select the “Spectrum 2.5.3” script and click the Install button. Outdated files will be removed, and Spectrum v2.5.3 will be copied to the disk that was used to start up the computer. NOTE: If you want to install Spectrum to some other disk, click the Disk button until the disk is displayed.


After the update is installed, click the Quit button.


Launch the “SoundPatch” application and follow the on-screen prompts to update your Sound Control Panel (CDEV) so it lists all the currently defined “sound events.”


Choose Control Panels from the � (Apple) menu, then open the “Sound” CDEV.


Assign the sounds you want by selecting an event from the Event popup menu, then choosing the sound to be associated with that event from the Sound popup menu. For example:

	Event
	Suggested Sound

	File Transfer Complete
	Send/Receive-Good
or Ahh or Trumpets

	File Transfer Failed/Abort
	Send/Receive-Bad

	Grabbing Screen
	Saving Screen

	Key Click
	Key-Any

	Modem Connected
	Phone-Connected

	Modem Hanging Up
	Phone-Hangup

	Modem No Carrier
	Phone-No Connection

	RealTime Message
	Phone-Connected
or Trumpets

	Return Key
	Key-Return

	Space Key
	Key-Spacebar

	You Have Mail
	You Have Mail
or You Have Mail (HAL)


If you experimented in step  by choosing several sounds to hear what they sound like, choose Shut Down from the Special menu, then select the Restart option and click OK to restart the computer. The reason for restarting is that the Sound CDEV is now probably using a lot more memory than it needs to be, and restarting will fix that.


Now launch Spectrum version 2.5.3!

To install the !Help! NDA System and documentation for Spectrum:


Select the ‘Spectrum Help System’ script and click the Install button. The !Help! NDA and related documentation will be copied to the ‘System:Desk.Accs’ folder on your boot drive.


Reboot your hard drive to install the !Help! NDA into the Apple Menu.
If you use Spectrum with 3.5" disks:
See the previous section if you will use Spectrum with a hard disk drive.

Choose Quit from the File menu and the Finder reappears.


Make a backup copy of the Spectrum update disk.


Drag the original Spectrum update disk icon into the Trash to eject the disk and remove its icon from the desktop.


Insert the backup copy of the Spectrum update disk.


Rename the backup disk to be “Spectrum”.


Drag the following items into the Trash:

 Prefs.Convert
 Install
 Misc.


Choose Shut Down from the Special menu then click OK to shut down (turn off system power). You can now start using Spectrum v2.5.3 just as you have been using Spectrum v1.0 or later.

Feature Changes

This section describes the program feature changes made in all versions of Spectrum from Spectrum v2.0 through v2.5.3. Refer to Spectrum’s online !Help! topic “Changes in Spectrum 2.5.3” to learn about the recent bug fixes and program feature changes made in the v2.2, v2.3, v2.4, v2.5.2 and 2.5.3 updates.

You will immediately see some changes with the Spectrum™ v2.5.3 menus. These are mainly to include the integrated support of Marinetti™ 2.0 and its TCP/IP environment.. This has led to a number of additional script commands to support TCP/IP through scripting. There are also a few other new menu items that have been added since Spectrum™ 2.1.

Underneath the surface there have been many changes, bug fixes, and new script commands added. Most of the additional script commands have been designed to enhance and improve script functionality, and many are a result of limitations found while developing both “Spectrum Internet Suite™” and other script sets. Some of the XCMDs have been expanded since the release of Spectrum v2.1. Some of these XCMD updates have already been issued with the various script sets, but the latest versions of all the current XCMDs are included with this release of Spectrum, and should be used in place of existing versions. Some existing XCMDs that are no longer required will be removed by the Installer.

The Spectrum™ 2.5.3 update did not introduce any major feature changes from Spectrum™ 2.2. A small number of script commands have been added however, and a number of minor bugs have been fixed.

General Changes & Bug Fixes

NOTE: The version 2.2 to 2.5.3 Preference file format has been extended to support new features. Version 2.x preference files are converted automatically to the new format. The new format cannot be used with older Spectrum Pref files.

•
In v2.2, the code was significantly reorganized to make room for more features. The protocol transfer code and some of the dialog code have been put into two dynamic segments to be more memory friendly.

•
The Spectrum Port driver wasn’t forcing unused high-bits off (i.e., when a 7-bit data format was selected it was possible for the 8th bit to be set). Fixed.

•
The Spectrum Port driver stopped liking DataLink modems, especially on ROM01 machines. Fixed.

•
Made more refinements to try to reduce data loss:

Removed a _TickCount call from the timer routine.

Now waits for VBL to cycle when changing hardware handshake status.

Added support for “II Not Disturb” to automatically turn “Master Time Keeping” on and off whenever Spectrum is started and quit.

•
^G (SysBeep) has been reworked so the correct Sound CDev sound should be played. Now the interrupt-friendly (raspy) beep will play only if Hardware Handshake is not checked and a carrier is detected.

•
If an XCMD or Online Display is not loaded successfully, now a beep is sounded and the item’s name is displayed for one second in the “Loading” status area.

•
We added the capability for XCMDs to add custom menu items into Spectrum’s menus. Several supplied XCMDs take advantage of this feature, including HodgePodge and Kermit.

•
A new “�” (solid black apple) menu has been added to the right of the Settings menu. The new menu is shown only when an XCMD has added an item to it.

•
Fixed a problem where the menu bar clock would not change to “am” at midnight or “pm” at midday unless the clock was fully updated (e.g., by a window closing or other similar event).

•
Alerts now use “the latest cool button layout.”

•
From Spectrum™ v2.2 onwards:

Spectrum™ now requires System 6.0.1. A hard disk is recommended.

Improved script execution speed through a reorganization of the matching algorithm.

Scripts can be compiled to optimise their execution speed.

Spectrum™ and the XCMDs are now Y2K compliant, where appropriate, additional script commands have been added..

Spectrum™ now features integrated support for Marinetti™ 2.0 TCP/IP.

HTML files can be viewed directly from within Spectrum™.

Internal support for the Babelfish™ Import and Export. Engine.

New internal “Preferences” folder.

Spectrum™ now looks first for the “Spectrum2.Prefs” file in the internal Preferences folder, before it looks in the System folder. This allows multiple copies of Spectrum to run smoothly.

Conversion of old preference files no longer causes problems.

Spectrum™ now supports the Control Panel version of Hierarchic. If not already active, Hierarchic will auto-load if the CDev is present in the CDevs folder.

The Spectrum™ Port driver has been updated.

Support for ‘finderSaysBeforeOpen’ calls to open Text files automatically.

•
From Spectrum™ v2.3 onwards:

An X/Y/Zmodem bug that slowed transfers and caused increased checksum errors has been fixed.

A workround has been made for a bug in the Marinetti 2.0 TCP/IP stack. This could cause Spectrum to crash if a socket closed when more than 4K of data was returned.

The RESUMENEXT script command now works correctly.

Fixed a problem in the “Search File” script command that caused an endless loop under certain circumstances.

Fixed a problem with sending Text files showing the wrong size in the Status dialog.

Fixed some interaction problems with Hierarchic and custom menus.

Fixed a Hangup problem when DCD and Hardware Handshake were not checked.

Fixed the reversed paths for “Set SendPath” and “Set ReceivePath”.

Improved the renaming algorithm when receiving duplicate files.

Fixed a problem that would cause endless looping if the receive filepath was not found.

Fixed a problem that could cause hanging if the Capture Buffer filled during batch downloading.

Fixed a problem that could cause overwriting on the Text screen during downloads.

Improved the handling of the WindowMgr Menubar switching.

Fixed a bug in Evaluate where a number to the power of ‘0’ was returning an incorrect value.

OA-G no longer clears the Text or VT100 screen display if they are already open.

Improved recovery from cancelled X/Ymodem transfers.

Fixed an intermittent lock up on printing.

•
AppleWorks 5.0 documents include Inverse and MouseText characters. These will now display correctly within the Editor, though the Inverse attributes will be stripped. These characters will also be sent correctly if you send an AppleWorks file as text.

•
There is a bug in the original GSPlus™ XCMD that can cause it to interfere with the messages being sent to other XCMDs. If you have been using this XCMD, you will find a new version supplied with Spectrum™ 2.5.3 that cures these problems.

•
Version 2.5.3 fixed some problems with the TCP/IP data interface.

� (Apple) Menu

•
Removed Spectrum’s built-in help in favor of the !Help! NDA (which is included with Spectrum). If you don’t want any help you can inactivate the Help.NDA desk accessory (located in the System:Desk.Accs: folder).

If you want help only while Spectrum is being used (even if you have Shift-booted the computer) you can move the Help.NDA into the same folder as the Spectrum application. If Spectrum loads the NDA, it is unloaded when Spectrum quits.

Regardless of where the Help.NDA is located, the NDA always looks for its files in the Desk.Accs:Help.Files: folder.

•
Added “Menu Item Help” that dims every menu item except those owned by Spectrum, and changes the mouse pointer to a “menu item help” pointer. When a menu item is selected, Spectrum asks the !Help! NDA to display the appropriate help information.

NOTE: Spectrum cannot dim the Trans​Prog III menu (if present). If you select an item from the TPIII menu, the help request is transmitted to !Help! but then TPIII will attempt to launch the item you selected.

File Menu

Open

•
Option-opening a file of type $50 could cause a crash because Spectrum was interpreting all filetype $50 files as Teach files. Fixed.

•
Loading an empty file into the Editor changed the name of the Editor window to the empty file’s name, even though the Editor contents were untouched after an error message was shown. Fixed.

•
Holding the Option key down now allows the data or the resource fork (if present) of a file to be opened.

• If a file with the suffix ‘.HTM’ or ‘.HTML’ is opened, and the optional ‘HTML.Engine’ is present in the ‘Add.Ons:Drivers’ folder, you will be asked if you want to view the file as HTML. You will still see the file in its raw text form in the Editor after you have finished viewing the HTML display.

Save

•
The correct filetype is now set on “saved as” files.

•
With an autosave file set up, Save As will allow saving of the current buffer independently from the Save command.

•
Added a clarification message when autosaving a buffer to a full disk.

•
If you opened an AppleWorks file into the Editor, then File/Saved it, the file is saved as Text instead of AppleWorks. Fixed. (Use Save As to save as a different file type.)

Babelfish™

•
Babelfish™ Import and Export is now supported. This requires Babelfish™ to be installed, and Text filters to be available. See the Babelfish™ documentation for further details.

Send/Receive

•
Added the ability to transfer files that have a resource fork, by using a MacBinary header. Because the receiver must be capable of receiving and processing a MacBinary file, the default file transfer preferences are set so files with a resource fork cannot be transmitted. If you decide to change this preference, be sure the recipient is able to handle the file.

•
If you received a file via Zmodem to a P8 volume, and the file had a period as the first character, Spectrum was doing strange things and reporting non-existent errors. This was caused by a bad JudgeName call. We also found that if you received a file by Zmodem that required JudgeName, the transfer did not complete properly. Both items have been fixed.

•
A “Make this folder default” checkbox has been added to the file selection dialog boxes for all built-in file transfer protocols. When checked (and you accept a file to transfer) the folder that contains the file is stored as the default send or receive file transfer path. The choice is not written to the preferences file unless the settings are saved.

•
When sending a text file, Macintosh text files would not be selectable. Fixed.

•
When sending Xmodem ProDOS, the received file would be truncated. Fixed.

•
Fixed a Zmodem escape character problem that showed on some host systems.

•
The Freezer XCMD is no longer necessary, as its functionality has been incorporated directly into Spectrum.

•
Spectrum was forcing filenames to lowercase for Zmodem and Ymodem receives. Fixed.

•
If an incoming Zmodem file happened to have a colon or slash in its embedded filename, a “file not found” error would occur and the transfer would abort. Most Zmodem implementations do not pass these characters, but some do, so Spectrum now replaces those path separators with periods.

•
Spectrum does not attempt to extract files from a Binary II wrapper if there are multiple files enclosed because it would be nearly impossible to resume a transfer. To help alert the user that he needs to use some other program (like ShrinkIt) to extract the multiple files, a message is now added to the capture buffer that says “WARNING: A Binary II header holding multiple files was not unpacked.”

•
Removed the code to resume CIS B+ uploads because CompuServe has never implemented that capability.

•
The file transfer status dialog box now shows whether a Binary II or MacBinary header is present on the incoming/outgoing file.

•
When using CIS B+, if you typed only a filename to send or receive, the correct file transfer folder was not always set properly. Fixed.

Launch

•
Fixed a problem that would not let the Hangup checkbox be unchecked.

Quit

•
If you opened the SHR screen, then the Editor, then opened the VT100 display, then go back to the Editor and File/Quit, lots of windows would appear, disappear, reappear, etc. as the windows were closed in a fixed order. The windows are now closed in the order in which they are layered.

Edit Menu

Paste

•
If text had been copied into the Clipboard, Paste was not highlighted when the Editor was first opened. Fixed.

•
�V did not work in VT100 if the chat line had been open in the Spectrum Text screen. Fixed.

Paste As Reply

•
This feature didn’t work right if the selected text was greater than 76 characters. Fixed.

Find/Replace

•
Pasting into the Find box now activates the Find button.

•
The “apply/replace” script command was changing some choices in the dialog box. Fixed.

Signature

•
If a Signature has been defined by the ‘Set Signature’ script command, this will insert that Signature into any open TextEdit window.

Show Menu

Online Display

•
�j did not work from some online displays; you had to press �-Shift-J. Fixed so it is no longer case sensitive.

•
When displaying echoed information, characters were routed to the script screen vector instead of the normal screen vector, which caused some information to be lost. Fixed.

Editor

•
Added more support for extended keyboards (the small “forward delete” key, Home, End, Page Up, Page Down).

•
If an NDA or other concurrent application sends a ‘finderSaysBeforeOpen’ call, and Spectrum™ gets the call first, the filetype will be checked to see if it is a Text, Teach or classic AppleWorks file. If so, it will be opened into the Editor. An example is double-clicking a Text file displayed in a Disk Access II™ catalog, when Spectrum will open the file before Disk Access II™ opens its default window.

Clipboard

•
The clipboard window can now be printed. The window is also now “editable” in that you can highlight some text in the Clipboard window and Edit/Copy it…which deletes all of the clipboard contents and replaces it with the text you had highlighted.

Chatline

•
If you press the down arrow in the first or second line when the cursor is to the right of the end of the next line, the cursor jumps to the end of the next line instead of sticking, and not moving as expected.

•
If the chatline was full, pressing the Arrow keys would cause a beep. Now it beeps only when attempting to add a character..

•
If you are using the SHR display, you can now move around the Chat Line by clicking with the mouse.

Phone Menu – TCP/IP Menu

Please refer to the documentation that comes with Marinetti™ for full details on how to setup and activate TCP/IP through the TCP/IP Control Panel.

Dial Number - Services

•
Spectrum no longer auto-dials the next phone number if the current phone number fails to connect.

•
Linking a script to a dialing entry no longer corrupts the first character of the filename.

•
From Spectrum™ v2.3, Dial Number still operates as before, but if the optional TCP/IP Menu is selected instead, this item will be renamed to Services.

•
The Modem Init dialog has been changed to show a “popup” menu of modem types instead of the original “Normal” and “High Speed” strings. The file that is used to build this menu is held in the new “Preferences” folder and so can be edited if you wish.

•
“Services” leads to a similar dialog to the “Dial Number” dialog. You can create and edit a service list of your most used services. You can also connect directly to a system by entering an “IP name” or “dotted address” into the Connect box.

•
“Telnet” mode can be optionally selected. In Telnet mode, the setting of the Half Duplex flag is ignored, and echoing to screen will be controlled by the host you are currently connected to.

Hangup - Connect - Disconnect

•
In Serial mode, the ‘Hangup’ menu item is dimmed if offline.

•
In TCP/IP mode, the ‘Hangup’ menu item is renamed to either ‘Connect’ or ‘Disconnect’. ‘Connect’ will make a connection to your ISP. ‘Disconnect’ will warn if you have any active connections, and then Disconnect you from your ISP.

Switch to TCP/IP - Switch to Serial

•
Controls the switching between the two operating environments. When in Serial mode, the menu items are named as before, but when in TCP/IP mode, some menu items now have new names and functions:

Answer Back - Logout

•
Answer Back operates as before.

•
Logout logs you out from the currently active connection.

Service Items

•
When you have logged in to a service, the connection or socket names will be entered at the foot of the TCP/IP menu. Each menu item is numbered, and you can then switch between active connections by selecting from this menu. You can also link these items to FKeys, by running the ‘TCPIP.FKeys’ script.

Script Menu

See the “Script Language Changes” section for the list of changes that affect scripts.

Learn a Script

•
This will now record any pause from the last character being received, and a string being transmitted. This should help produce improved scripts where time sensitive actions are important. You should always subsequently edit generated scripts so they are optimised for best results.

Menu Files

•
These files can now have optional pathnames that will be used instead of a linked “Letter” key. A space can also now be used instead of a “Letter” key. To build the file, ‘tabs’ are used to space any pathname that is given from the menu name. This now means that a Menu file might look like this:

A
First Script

B
Second Script with path<tab>:hard.disk:folder:filename

Third Script with path<tab>:hard2.disk:folder:filename

Settings Menu

Online Display

•
The “Spectrum SHR Fast” and “Spectrum SHR Normal” displays have been combined into a single “Spectrum SHR” display that automatically switches between the fast and normal display modes as necessary.

•
If Delete=Backspace is checked, character $08 is sent out the port when the Delete key is pressed, rather than whatever key sequence is associated with the left arrow key.

ANSI

•
There was a slight possibility that commands with multiple parameters (e.g., ESC[31;47m) could be trashed. This has been fixed.

•
The underline character attribute is now supported.

•
Supports the direct actions Debug On and Debug Off to control whether unknown/unsupported Escape codes are displayed in the Status Line. For example:

DirectAction "Debug ON" 0

DirectDisplay "^[[8a"

•
Escape sequences which do not have commands are ignored (or reported as invalid if display debugging is on).

•
Invalid SM and RM commands are tolerated better.

•
Supports Insert and Replace Mode (IRM) using the SM and RM commands with a parameter of 4 (e.g. ESC[4h) sets the mode so characters are inserted instead of replaced.

•
Supports Horizontal Editing Mode (HEM) using the SM and RM commands with a parameter of 10 (e.g. ESC[10h) sets the mode so editing commands (insert/delete) go left instead of right.

•
Supports the Insert CHaracter (ICH) command to insert a specified number of blank characters at the current location (respecting the HEM mode). For example, ESC[3@ inserts 3 blank spaces.

•
Includes custom support for Genie’s Internet services.

Options

•
The old “File Transfer Settings” submenu has been renamed. This better reflects its use by many of the XCMDs. For details of any additional Menu items, refer to the ‘Spectrum Extras’ subject, and the relevant sub-topic of the !Help! NDA.

The Options menu item now presents a sub-menu with Receiving Options and Sending Options and other Options items inserted by XCMDs. Most of the options existed in Spectrum v2.0; the new or changed items are as follows:

•
SendAhead is relevant for both sending and receiving, but different protocols handle SendAhead differently. Because there is really only a single SendAhead option, if you change the setting in the Sending Options dialog box, it will also change in the Receiving Options dialog box (and vice-versa).

•
The Sending Options dialog lets you specify the location of the files to be sent. The Receiving Options dialog lets you specify the default location for storing received files. In each case you can choose no default location, and files will be sent from/received into the most-recently used folder.

•
The Receive Options dialog lets you specify the filetype and auxtype to be assigned when the received filetype/auxtype is unknown.

•
MacBinary is now supported so files with a resource fork can be transmitted to other Spectrum v2.4 owners, to Macintosh computers, or to others who can process a MacBinary header.

.

External Commands (XCMDs)

The “Spectrum Extras” subject and sub-topics in the !Help! NDA contain complete documentation on the new and updated XCMDs provided with Spectrum v2.4.

NOTE: The Freezer XCMD is no longer necessary because its automatic features are included directly in Spectrum v2.1. It can still be used if your scripts want to freeze the mouse manually.

The following XCMD-related changes were made to Spectrum itself:

•
Unclaimed control hits might not have been seen by XCMDs correctly. Fixed.

•
The version number in Spectrum’s _AcceptMessage call has been changed to 2.1.

•
The BinHQX XCMD has been expanded since Spectrum™ 2.1, to include Base 64 and UUencode functions.

•
NOTE: The TopCat, BatchXfer and Freezer XCMDs are no longer necessary because their features have been incorporated directly into Spectrum™ v2.4.

•
The ResEdit XCMD has been replaced by the WorkBench XCMD .

TCP/IP

Spectrum now has two modes of working. The original Serial connection mode and a new TCP/IP mode. You must have the Marinetti™ TCP/IP Cdev installed and configured to use the TCP/IP mode.

If you regularly use any other communications programs, you may wish to use Serial mode as your default setting when Spectrum first starts up. If TCP/IP has made an active connection by another application before Spectrum is started, TCP/IP mode will be forced, regardless of your default settings. If you wish to continue with a serial connection, you must first Disconnect TCP/IP by either selecting Switch to Serial on the TCP/IP menu, or by calling the Set Serial script command.

If the TCP/IP CDev or another application makes the connection, Spectrum will be forced into TCP/IP mode when it starts. You will see an Alert box warning you of this.

When you Quit Spectrum, if TCP/IP is still Connected, any open sockets will be closed automatically whether TCP/IP is disconnected or not.

TCP/IP Menu

Services

Choose Services to Connect to a host or to create Service entries for the systems you call.

Services Entries

Click New to create a new Service entry; to edit an existing entry highlight it and click Edit.

Up to 32 Service entries can be created within the list. Each Service entry remembers the dotted address or system name that you enter, an optional linked script, and the required display. If you choose ‘Default Display’, then the current display will be used. Unlike the phonebook entries, a Service entry does not remember other settings, as these are not directly relevant to a TCP/IP connection. The Service list is stored as a text file in the ‘@:Spectrum:Add.Ons:Preferences:’ folder. This file can be manually edited if you wish. The ‘Tab’ separated fields for each line are: Entry Name, Address, Script and Online Display.

Login

Double click an entry from the list, or enter the dotted address or host name into the Connect box. If you are not already online you will automatically be connected.

Telnet

The Telnet mode is the default mode used for most services. It will be automatically set whenever you open the Services dialog. If you do not wish to connect in Telnet mode, then uncheck the 'Telnet' box before logging in. Note that the setting of TCPEOLTranslation, TCPFlushChar and TCPFlushFrequency will all affect the keyboard responses if Telnet mode is turned off.

TIP: If the connection fails, and you cannot Disconnect normally, you may find that the modem is still online. Quickly switch to Serial mode, select the same baud rate that TCP/IP was using, and select Hangup to drop the line.

TIP: If you do not want to see messages while you connect, or do not want the Capture buffer and screen to record a switch of services. uncheck the respective checkboxes.
Connect - Disconnect

If you are not yet connected to your ISP, the menu will show Connect, and will connect you to your ISP. Choose Disconnect to logout ALL active Connections and Disconnect from the host. If there are Connections active, you will be warned and have the option to Cancel.

Once connected, you will still need to login in to a service from the Services dialog.

Send Break

This menu item will be dimmed while TCP/IP is active.

Switch to Serial

This menu item will switch to the Serial mode from TCP/IP mode.

Close Connection

Choose Logout to logout from the currently selected Connection shown by the √ marker. If there are other active Connections, then the first of these will then be selected as the new active Connection.

Connections:

Each connection you open will add an entry to the end of the TCP/IP menu. If the chosen Connection was opened from an item in the Service List, or the optional MenuName was used in the Open TCPSocket script command, then that name will be used for the Menu item. Otherwise the domain name or dotted address will be used. Each entry is numbered to show the logical Connection.

You can change active connection by selecting a new one from those shown. A √ will show against the current active Connection.

When you switch Connections, the current display type, screen contents, and up to 32K of the Scrollback Buffer will be preserved. If you then switch back to this Connection later, the display will be restored as it was when you last viewed it. If a script has set the ‘Set Screenbypass ON’ flag, then the displays will not be reopened automatically. Note that with a large number of sockets open, you could eventually run out of memory if all the Scrollback Buffers were full. It is advised to size the Scrollback Buffer to suit the number of Connections you might expect to use.

When you switch Connections, a marker line will be added to the Capture buffer, to show a new Connection has been selected.

Tip: Define your FKey Menu items for the first ten connections. You then be able to quickly switch these by using the OA-# equivalent.

Script Language Changes

This section details new and changed script commands in all versions of Spectrum between 2.0 and 2.4. It is intended for script authors; script users should find that scripts written for version 1 still execute identically under version 2.4 (just a whole lot faster).

NOTE: Items marked with a bar to the left of the text (like this paragraph) indicate changes made from v2.0 to v2.4. If you are already familiar with v2.0, focus on the marked items.

General

•
Instead of having only ten variable numbers (0 through 9), Spectrum now supports any number of named variables.

•
Added support for “Spectrum External Commands” (or XCMDs), which can provide sophisticated add-on features for scripts.

•
Version 2.4 executes scripts many times faster than version 1 did!

•
The chosen online display automatically opens for commands that require it to be open, but the flag wasn’t getting reset if the Editor window was opened. Fixed.

•
“#” comments at the end of commands with optional parameters could cause problems. Fixed.

•
If a line had only a replacement variable on it, and the replacement variable is empty, an error would occur. Fixed.

Specially-Treated Characters XE "Specially-Treated Characters" \i
$ (Replacement Items) XE "$ (Replacement Item)" \i

 XE "Replacement Item" \i
$Version XE "$Version" \i

 XE "Version ($ Replacement Item)" \i
Gets replaced by the software’s name and version number (e.g. Spectrum 2.1).

$AutoSaveFile XE "$AutoSaveFile"

 XE "AutoSaveFile ($ Replacement Item)" \i
Gets replaced by the name of the current AutoSave file (if the filename has had a suffix added or incremented, this replacement will show the current name).

$Debug XE "$Debug" \i

 XE "Debug ($ Replacement Item)" \i
Gets replaced by the current debugging state (see Set Debug in the scripting manual).

$DebugFile XE "$DebugFile" \i

 XE "DebugFile ($ Replacement Item)" \i
If $Debug indicates debugging is going to a file, then $DebugFile provides the FoldernameFilename of the debug file.

$LastFile XE "$LastFile" \i

 XE "LastFile ($ Replacement Item)" \i
Gets the name of the last file that was saved or selected in a standard file dialog.

$LastXferPath XE "$LastXferPath" \i

 XE "LastXferPath ($ Replacement Item)" \i
Gets replaced by the Foldername of the last successful file transfer. The value remains valid until the next successful file transfer. NOTE: The Kermit XCMD does not update this value.
$LastXferFile XE "$LastXferFile" \i

 XE "LastXferFile ($ Replacement Item)" \i
Gets replaced by the Filename of the last successful file transfer. The value remains valid until the next successful file transfer. NOTE: The Kermit XCMD does not update this value.

$Date XE "$Date" \i

 XE "Date ($ Replacement Item)" \i
$DateTimeStamp XE "$DateTimeStamp" \i

 XE "DateTimeStamp ($ Replacement Item)" \i
•
If the clock is set to the year 2000 or beyond, $Date and $DateTimeStamp would fail with a random error message. Fixed.

$LongYear XE "$LongYear" \i

 XE "LongYear ($ Replacement Item)" \i
Gets replaced by the four digit year (e.g., 1996) so scripts can be written to handle the year 2000 and beyond.

$ReceiveFType XE "$ReceiveFType" \i

 XE "ReceiveFType ($ Replacement Item)" \i
Gets the filetype (in decimal) that is assigned when a received file’s filetype/auxtype is unknown.

$ReceiveAType XE "$ReceiveAType" \i

 XE "ReceiveAType ($ Replacement Item)" \i
Gets the auxtype (in decimal) that is assigned when a received file’s filetype/auxtype is unknown.

$Trigger XE "$Trigger" \i

 XE "Trigger ($ Replacement Item)" \i
Returns the value of the last trigger string that was seen. Returns 0 if no triggers have been seen since the start of the script. Typically this replacement item would be used only in a trigger handler routine.

$Buffer

Gets replaced by the size of the contents of the capture buffer.
$FullTime XE "$FullTime" \i

 XE "FullTime ($ Replacement Item)" \i
This now strips any trailing spaces (applies only to 24-hour time format).

$ErrorMsg XE "$ErrorMsg" \i

 XE "ErrorMsg ($ Replacement Item)" \i
Some of the messages have changed for clarity. For example, “Parameter not assigned” is now “Required parameter is missing.”

$ErrorCode XE "$ErrorCode" \i

 XE "ErrorCode ($ Replacement Item)" \i
Only valid after a disk access error occurs

Gets replaced by the hexadecimal code for the disk access error that occurred. See the “Error.Codes” file in the Documentation folder for a list of possible errors.

$FilePos# XE "$FilePos#" \i

 XE "FilePos# ($ Replacement Item)" \i
must be replaced by a number from 0 to 9

Gets replaced by the character position of the “expected” file marker for the specified file number. If $FilePos3 is 7 then the next character that is read from file 3 will be the 7th character in the file; if a character is written then the 7th character in the file will be overwritten.

$ActualFilePos# XE "$ActualFilePos#" \i XE "ActualFilePos# ($ Replacement Item)" \i
must be replaced by a number from 0 to 9

Gets replaced by the actual file marker position for the specified file number. This value will match the $FilePos# value unless a Set FilePos command has been used (in which case $ActualFilePos# shows the true file position, while $FilePos# shows the desired file position).

$EOF# XE "$EOF#" \i XE "EOF# ($ Replacement Item)" \i
must be replaced by a number from 0 to 9

Gets replaced by the character position of the last character in the specified file (the End Of File marker).

$EditorSize# XE "$EditorSize#" \i XE "EditorSize# ($ Replacement Item)" \i
must be replaced by a number from 0 to 9

Gets replaced by the number of characters in the given script editor.

$EditorFile XE "$EditorFile" \i

 XE "EditorFile ($ Replacement Item)" \i
Gets replaced by the name of the file in the editor (if the editor has been saved).

$LastScriptPath XE "$LastScriptPath" \i

 XE "LastScriptPath ($ Replacement Item)" \i
Gets replaced by the Foldername of the script which chained to the currently-running script. If the currently-running script was not chained to, or was chained to from a script in the Editor, then $LastScriptPath is "".

$LastScriptFile XE "$LastScriptFile" \i

 XE "LastScriptFile ($ Replacement Item)" \i
Gets replaced by the Filename of the script which chained to the currently-running script. If the currently-running script was not chained to, or was chained to from a script in the Editor, then $LastScriptFile is "".

$ReplyQuote XE "$ReplyQuote" \i

 XE "ReplyQuote ($ Replacement Item)" \i
Gets replaced by the quote string (see Set ReplyQuote).

$Quote XE "$Quote" \i

 XE "Quote ($ Replacement Item)" \i
Gets replaced with the current quote character (see Set Quote).

$Token XE "$Token" \i

 XE "Token ($ Replacement Item)" \i
Gets replaced with the current token character (see Set Token).

$Baud XE "$Baud" \i

 XE "Baud ($ Replacement Item)" \i
Gets replaced by the current baud rate, in the format used by the Set Baud command (i.e. 2400 or 9600).

$DFormat XE "$DFormat" \i

 XE "DFormat ($ Replacement Item)" \i
Gets replaced by the current data format, in the format used by the Set DFormat command (i.e. 7E2 or 8N1).

$Duplex XE "$Duplex" \i

 XE "Duplex ($ Replacement Item)" \i
Gets replaced by the current duplex setting, in the format used by the Set Duplex command (i.e. HALF or FULL).

$Echo XE "$Echo" \i

 XE "Echo ($ Replacement Item)" \i
Gets replaced by the current echo setting, in the format used by the Set Echo command (i.e. OFF or ON).

$StatLine XE "$StatLine" \i

 XE "StatLine ($ Replacement Item)" \i
Gets replaced by OFF or ON to indicate the state of the status line.

$ChatLine XE "$ChatLine" \i

 XE "ChatLine ($ Replacement Item)" \i
Gets replaced by OFF or ON to indicate the state of the chat line.

$SendLines XE "$SendLines" \i

 XE "SendLines ($ Replacement Item)" \i
Gets replaced by the line break position, as set by the Set SendLines command.

$Hit XE "$Hit" \i

 XE "Hit ($ Replacement Item)" \i
Gets replaced by the number of the last Hitzone that was clicked.

$Update XE "$Update" \i

 XE "Update ($ Replacement Item)" \i
If a screen update occurred on a super hires display, $Update is set to 1. This is useful for advanced scripts that may need to redraw special screen elements (rectangles, icons, etc.).

$Dialed XE "$Dialed" \i

 XE "Dialed ($ Replacement Item)" \i
Intended for use in a logon script. Gets replaced by a null string if no phone number was dialed (i.e. the phonebook entry did not have a phone number attached). It is replaced by “Yes” if a phone number was dialed.

$PBMethod XE "$PBMethod" \i

 XE "PBMethod ($ Replacement Item)" \i
Gets replaced by a “T” or “P” to indicate Tone or Pulse dialing, as set by the last-accessed phonebook entry.

$PBNumber XE "$PBNumber" \i

 XE "PBNumber ($ Replacement Item)" \i
Gets replaced by the phone number of the last-accessed phonebook entry.

$PBDisplay XE "$PBDisplay" \i

 XE "PBDisplay ($ Replacement Item)" \i
Gets replaced by the name of the Online Display that is attached to the last-accessed phonebook entry.

$PBRedial XE "$PBRedial" \i

 XE "PBRedial ($ Replacement Item)" \i
Gets replaced by the redialing options set for the last-accessed phonebook entry.

$PBFile XE "$PBFile" \i

 XE "PBFile ($ Replacement Item)" \i
Gets replaced by the Filename of the script (if any) that is attached to the last-accessed phonebook entry. ($LogonFile is still valid for compatibility with version 1.)

$PBPath XE "$PBPath" \i

 XE "PBPath ($ Replacement Item)" \i
Gets replaced by the Foldername of the script (if any) that is attached to the last-accessed phonebook entry.

$SEDirty# XE "$SEDirty#" \i XE "SEDirty# ($ Replacement Item)" \i
must be replaced by a number from 0 to 9

Gets replaced by 1 if the specified script editor has been changed since being loaded or saved; null if the editor has not been changed.

$EditorDirty XE "$EditorDirty" \i

 XE "EditorDirty ($ Replacement Item)" \i
Gets replaced by “1” if the editor contents need to be saved; otherwise it is null.

$BufferDirty XE "$BufferDirty" \i

 XE "BufferDirty ($ Replacement Item)" \i
Gets replaced by “1” if the capture buffer needs to be saved; otherwise it is null.

$AutoSaveBuffer XE "$AutoSaveBuffer" \i

 XE "AutoSaveBuffer ($ Replacement Item)" \i
Gets replaced by the state of the AutoSaveBuffer flag.

$EditorHandle# XE "$EditorHandle#" \i XE "EditorHandle# ($ Replacement Item)" \i
must be replaced by a number from 0 to 9

Gets replaced by the memory address of the TextEdit handle that holds the data for the specified script editor. For use when communicating with External commands.

$FailureCode XE "$FailureCode" \i

 XE "FailureCode ($ Replacement Item)" \i
After a command that waits for port input, if Failed is true then $FailureCode gives the reason the command failed:

0 = Other source (e.g. a Hitzone)
1 = Timeout was reached
2 = IdleTimer was reached

$DoHangup XE "$DoHangup" \i

 XE "DoHangup ($ Replacement Item)" \i
After using the Get File command with a Kind of 3 (launchable applications), $DoHangup indicates whether the “Hangup” option was checked (1 means yes; null means no).

$DoReturn XE "$DoReturn" \i

 XE "DoReturn ($ Replacement Item)" \i
After using the Get File command with a Kind of 3 (launchable applications), $DoReturn indicates whether the “Return to Spectrum” option was checked (1 means yes; null means no).

$FreeMem XE "$FreeMem" \i

 XE "FreeMem ($ Replacement Item)" \i
Provides the number of bytes of real free memory currently available.

$DisplayOpen

Gets replaced by ON or OFF depending on whether the current online display is open or closed.

$FileID#
must be replaced by a number from 0 to 9

Gets replaced by the GS/OS ID of an open file. The returned value cannot be directly used within any script commands. It is intended for use by XCMDs that can support the direct handling of an open file.

$Date2

Gets replaced by the date using a LongYear value. (e.g. 3 Nov 1993, 17 Sep 2000)

$DateTimeStamp2

Gets replaced by the date/time string using the LongYear value. (e.g. D17Sep1994T1040)

$Year2

This is the same as $LongYear. And is provided for compatiblity with the new LongYear replacement values.

$ChainLevel

Gets replaced by the current level in the Chainback sequence. The returned value will be from 0-16.

$Signature

Gets replaced by the Signature string if it has been defined.

$BufferSize

$ScrollSize

$PortSize

Gets replaced by the size of the defined buffers. Note that this is the maximum size of the buffer as defined, not the size of its current contents.

$BufferSaved

Gets replaced by a NULL string if the buffer has been saved, or a ‘1’ if not. Use this in conjunction with the $BufferDirty variable.

$TCPInstalled

Gets replaced by ON or OFF depending on whether the Marinetti TCP/IP Cdev is installed or not.

$SerialActive

Gets replaced by ON or OFF depending on whether the serial mode has been selected or not

$TCPActive

Gets replaced by ON or OFF depending on whether the TCP/IP mode has been selected or not

$TCPOnline

Gets replaced by ON or OFF depending on whether TCP/IP is connected or not.

$TCPError

Gets replaced by the last error to be reported by Marinetti when a TCP/IP command failed.

$TCPIPID#

must be replaced by a number from 1 to 32

Gets replaced by the socket number used by scripts, from a logical connection number used by manual connections. This allows a script to pick up and use any sockets that have been logged into manually.

$ActiveSocket

Gets replaced by the ID # for the current TCP/IP connection. This value can be used subsequently in some of the TCP/IP script commands.

$FreeSockets

Gets replaced by the number of free sockets available. The returned value will be in the range of 0 to 32.

$TCPConnectName

If TCP/IP is active, this returns the name of the current Link Layer set within the TCP/IP CDev.

$TCPMessages

Gets replaced by ON or OFF depending on whether messages are currently being displayed for TCP/IP actions.

$TCPMode

Gets replaced by a value representing the current mode set for TCP/IP.

1 = data returned through port vectors
2 = data returned through port vectors (Telnet mode)
3 = data only returned through Get TCPData and Get TCPHandle

$TCPNotify

Gets replaced by ON or OFF depending on whether switching between active sockets is recorded in the capture buffer.

$IPAddress

If TCP/IP is active and online, gets replaced by the local address of the TCP/IP stack in the format “123.456.789.012”.

$EOLChar1

Gets replaced by the first character of the two EOL characters, range 0-255.

$EOLChar2

Gets replaced by the second character of the two EOL characters, range 0-255.

$FlushChar

Gets replaced by the character used to flush a line, range 0-255.

$FlushFrequency

Gets replaced by the value used to determine the maximum length of line that will be transmitted, range 1-512.

Parameters XE "Parameters" \i
VarNum becomes Varname XE "Varname Parameter" \i

 XE "Parameters:Varname" \i
Spectrum now supports named variables—there is no longer any such thing as a “VarNum”! Every place you see “VarNum” in the script manual, substitute “Varname”.

Spectrum still supports the ten numbered variables (0, 1, 2, 3, 4, 5, 6, 7, 8, and 9). With the exception of those default variables, variable names must start with a letter.

Variable names can contain any combination of letters and numbers, up to 32 characters long. Uppercase/lowercase does not matter (i.e., MYNUM, mynum, MyNum, and mYnUm are all the same variable, regardless of the CaseSensitive setting).

The only naming restriction is that you cannot create a variable based on the name of a built-in replacement item. For example, you cannot use “Date” because it is a built-in replacement item, nor can you use variable names that begin with Date (e.g., “DateOfCall” or “Date2”). You may, however, use names such as “MyDate”. NOTE: An “Assigned name is reserved” script error occurs if you attempt to use an existing replacement name.

Named variables work just like the numbered variables work: any place a VarNum was accepted, a Varname can now be used. The only minor difference between the two kinds of variables is that variables 0-9 are always defined and pre-set to null ("") by default, but named variables are not defined until they are created.

This means that when running a fresh script, displaying $0 will show nothing (because var 0 is pre-set to ""), but displaying $Something will show “$Something” on the screen because a variable named “Something” has not been created yet.

New named variables are created explicitly (e.g. Set Var MyNamedVar "Hi there!") or implicitly (e.g. Multiply 41 8 TheResult). Simply referring to a variable (i.e. using "$SomeVariable") does not create it.

In summary, numbered variables and named variables are nearly identical. The differences are:

•
Numbered variables always exist; Named variables exist only after they are created.

•
Certain commands (such as Store Vars, Restore Vars, Clear Vars, etc.) operate only on the ten numbered variables.

•
Certain commands (such as Delete Vars) work only on named variables.

Tips for Advanced Users

When setting a variable (Set Var MyColor "Blue") or accessing its contents ($MyColor) Spectrum must first find the exact variable being referenced before it can work with it.

Initially the variable name table is very short, but as you create new variables the table of variable names is expanded. The more variables you have, the longer the table is, and the longer it takes to search the table.

The search speed is not a concern unless you define hundreds of variables, but even then the search can be optimized by using shorter variable names, or long names that are unique in the first few characters.

For example, using variables named “My1VariableName” through “My99VariableName” will be faster than using variables named “MyVariableName1” through “MyVariableName99”. And using “M1” through “M99” will be even faster.

If you anticipate defining many variables, consider combining several pieces of information into a single variable. For example, instead of having 100 different variables to remember a “yes/no” response you could use a single variable to remember each response (e.g. “YYNNNYYN…”) and use the Substring/Overlay String commands to get and set the appropriate character.

Also, to keep the variable name table short, use the Delete Variables command to delete any variables created for temporary use.

String

A String can now contain up to 256 Characters (the previous limit was 128). Accordingly, this means that Variables, FKeys, Passwords, etc. can store up to 256 characters each.

Script Development XE "Script Development" \i
•
Extra spaces, commas, and hard spaces no longer affect command recognition (e.g. “if contains” is now recognized as being the command “if contains”).

Set Debug State {"FoldernameFilename"} XE "Set Debug" \i

 XE "Debug" \i
State can be External, File, Screen, Scrollback, or Off

FoldernameFilename is required when State is File, and must not be present for all other States
This command works like it did in version 1, with these additions:

•
When Spectrum is executing a script returned from an XCMD, the debug statement shows “XCMD –=>” instead of “DEBUG –=>”.

•
“Set Debug External” broadcasts debugging information to Spectrum External Commands, in case there is an XCMD that wants to handle debugging in a custom way. A “Debug” XCMD is provided as an example to show what is possible.

•
“Set Debug File” directs Scrollback data into the specified Foldername​Filename instead of to memory. This option significantly slows down script execution because the file is updated frequently. It is recommended the file be created on a RAM disk or a fast hard drive.

•
If “Set Debug File” was active and the disk gets full, subsequent file saves would result in an invalid reference number error. Fixed. Now if the disk gets full, the file is closed and debugging is turned off.

Set DebugTimeInfo State XE "Set DebugTimeInfo" \i

 XE "DebugTimeInfo" \i
State can be Off or On

When debugging with this setting turned on, the debug statement includes time information which can be used to optimize scripts.

Fundamental Commands

Clear Screen XE "Clear Screen" \i

 XE "Screen" \i
Clears and resets the screen as if File/New was chosen.

DirectTransmit "String" XE "DirectTransmit" \i
Transmits String directly out the port, without giving the Online Display any opportunity to alter the string (unlike the Transmit command which sends outgoing characters through the Online Display).

Transmit "String" XE "Transmit" \i
Shortcut: Xmit "String" XE "Xmit" \i
•
If Duplex is Half and Set Screen is Off, then this will not open the online display.

•
Now complains if too many quotes appear.

Clear Clipboard

Clears the Clipboard of any content. An empty Clipboard can speed up the operation of some script commands.

Open Help Value1 Value2 Value3

Optional: Value1 = Subject, Value2 = Topic, Value3 = TargetString
Opens the !Help! NDA, and if the optional Subject, Topic, TargetString are specified, will attempt to scroll to that position.

Close Help

Closes the !Help! NDA.

Set FKey Menu Value MenuValue
Value is a number from 0-9 for the OA-Fkey, MenuValue is a number from 1-51

Assigns specific menu items to an FKey instead of the usual “String”. This allows those menu items to be fired as easily as if they had a Key Equivalent. The file transfer items are probably the most useful items that can be assigned

MenuValues
Phone-TCP/IP Menu

1

Switch TCP/IP

20-51

TCP/IP sockets 1-32

MenuValues
Receive File Menu

2

CIS B+

3

XModem

4

1K XModem

5

4K XModem

6

YModem Batch

7

YModem-g

8

ZModem

MenuValues
Send File Menu

9

CIS B+

10

XModem

11

1K XModem

 12

4K XModem

13

YModem Batch

14

YModem-g

15

ZModem

MenuValues
BabelFish Menu

16

Import

17

Export

Play Sound "Name" XE "Play Sound" \i

 XE "Sound" \i
This command now plays any sound that can be seen by the resource manager, not just sounds stored in the *:System:Sounds: folder. NOTE: Resource names are case sensitive.
Play Event Value XE "Play Event" \i

 XE "Event" \i
Plays the sound for the specified event at the volume specified in the Sounds Control Panel. NOTE: In order to play sounds the Sounds CDEV must be installed and active, and the “Sounds” checkbox must be on in the Online Display Settings dialog box.
Example:

Play Event $$8 # bad keypress
Play Event $$100 # You have mail
The standard Sound CDEV does not list all these sound events. Run the “SoundPatch” utility to add listings for most of these events.

	Sound Events

	0000 Alert stage 0
	0053 Alert note

	0001 Alert stage 1
	0054 Alert caution

	0002 Alert stage 2
	0060 Screen blanking

	0003 Alert stage 3
	0061 Screen unblanking

	0004 Outside window
	0070 Beginning long operation

	0005 Operation complete
	0080 Application launching

	0008 Bad keypress
	0081 Application quitting

	0009 Bad input value
	0100 You have mail

	000A Input field full
	0E00 Error window base

	000B Operation impossible
	0EFF Error window other

	000C Operation failed
	0F00 Visual sound

	0011 GSOS to P8
	0F80 File transferred

	0012 P8 to GSOS
	0F81 Real time message

	0013 Disk inserted
	0F82 File transfer failed

	0014 Disk ejected
	1000 Connected to service

	0015 System shut down
	1001 Disconnected from service

	0016 Volume changed
	1002 Entered real time chat

	0030 Disk request
	1003 Left real time chat

	0031 System startup
	1004 Entering Forum/RT area

	0032 System restart
	1005 Leaving Forum/RT area

	0033 Bad disk
	1008 Modem-Dialing

	0034 Key click
	1009 Modem-Hanging up

	0035 Return key
	100A Modem-No carrier

	0036 Space key
	100B Modem-Connected

	0040 Whoosh open
	1010 Feature enabled

	0041 Whoosh closed
	1011 Feature disabled

	0042 Fill trash
	1012 Taking screen shot

	0043 Empty trash
	1020 Reading message

	0050 Alert window
	1021 Sending message

	0052 Alert stop
	

Settings XE "Settings" \i
Save Settings "FoldernameFilename" XE "Save Settings" \i

 XE "Settings" \i
FoldernameFilename is optional

Saves Spectrum’s current settings to disk If no file is specified, settings are saved to the current settings file. If a file is specified then settings are saved to that file, and it becomes the current settings file.

•
Would not save to a file unless it already existed. Fixed.

•
Neither filters nor passwords were being copied over to the new settings file, and a subsequent Load Settings would not restore the phonebook.

Load Settings "FoldernameFilename" XE "Load Settings" \i

 XE "Settings" \i
FoldernameFilename is optional

Loads Spectrum’s current settings from disk. If no file is specified, settings are loaded from the current settings file. If a file is specified then settings are loaded from that file, and it becomes the current settings file.

Set ScrollData Kind XE "Set ScrollData" \i

 XE "ScrollData" \i
Kind can be Raw or Filtered

Determines how incoming data is stored into the Scrollback buffer. Raw stores the actual data that was received; Filtered stores data after it has been processed by the online display (i.e. the same information that appears in the Capture Buffer).

Set ReplyQuote "String" XE "Set ReplyQuote" \i

 XE "ReplyQuote" \i
String can be 1-16 characters

Sets the quote format used when choosing Paste As Reply from the Edit menu.

Online Display Settings XE "Online Display Settings" \i

 XE "Settings:Online Display" \i
Set OnlineDisplay "Display" XE "Set OnlineDisplay" \i

 XE "Online Display" \i
•
The Failed flag was not being set or cleared correctly to indicate whether this command succeeded. Fixed.

•
This command now clears any defined Hitzones.

•
Setting Display to “Spectrum SHR Fast” or “Spectrum SHR Normal” actually selects the combined “Spectrum SHR” display.

Close OnlineDisplay XE "Close OnlineDisplay" \i

 XE "OnlineDisplay" \i
Shortcut: Offline XE "Offline" \i
Closes the current online display and displays Spectrum’s 640 mode desktop.

IMPORTANT: This command no longer causes the script to stop (because scripts can now operate even when the Online Display is not open). For full compatibility with version 1, edit any version 1 scripts so that “Close OnlineDisplay” is followed by the “Stop Script” command.

Clear Desktop XE "Clear Desktop" \i

 XE "Desktop" \i
Closes all Spectrum windows and NDAs, displaying Spectrum’s 640 mode desktop.

Set NullStrip ON/OFF XE "Clear Desktop" \i

 XE "Desktop" \i
Controls the removal of nulls in the input stream to the screen. The default setting is ON.

File Transfer Settings XE "File Transfer Settings" \i

 XE "Settings:File Transfer" \i
Set RelaxedXfers State XE "Set RelaxedXfers" \i

 XE "RelaxedXfers" \i
The state of this setting is now stored in the preferences file, if settings are saved.

Set FileXferPath "FoldernameFilename" XE "Set FileXferPath" \i

 XE "FileXferPath" \i
Sets both the ReceivePath and SendPath locations to the specified folder. Setting to an empty path ("") clears the paths and files will be received into/sent from the most recently-accessed folder.

Set MacBinary Status XE "Set MacBinary" \i

 XE "MacBinary" \i
Status can be On, Off, NoRez, Rez, Downloads

Sets the MacBinary setting, and can alter the Binary2 settings. Refer to the following table:

	Script Command
	Binary2
Down
	MacBin
Down
	Binary2
Up
	MacBin
Up
	Allow
Rez

	Binary2 On
	-
	-
	sets
	clears
	clears

	Binary2 Off
	clears
	-
	clears
	clears
	clears

	MacBinary On
	-
	-
	clears
	sets
	sets

	MacBinary Off
	-
	clears
	-
	clears
	clears

	MacBinary Rez
	-
	-
	-
	-
	sets

	MacBinary NoRez
	-
	-
	-
	-
	clears

	Binary2 Up
	-
	-
	sets
	clears
	clears

	Binary2 Down
	sets
	-
	-
	-
	-

	MacBinary Down
	-
	sets
	-
	-
	-

Set ReceivePath "FoldernameFilename" XE "Set ReceivePath" \i

 XE "ReceivePath" \i
Sets the default path used when receiving files. Setting to an empty path ("") clears the path and received files will be stored in the most recently-accessed folder.

Set SendPath "FoldernameFilename" XE "Set SendPath" \i

 XE "SendPath" \i
Sets the default path used when sending files. Setting to an empty path ("") clears the path and files will be sent from the most recently-accessed folder.

Set ReceiveFType Value XE "Set ReceiveFType" \i

 XE "ReceiveFType" \i
Value can be 0-255 ($$00-$$FF)

Sets the filetype to assign when a received file’s filetype/auxtype is unknown.

Set ReceiveAType Value XE "Set ReceiveAType" \i

 XE "ReceiveAType" \i
Value can be 0-65535 ($$00-$$FFFF)

Sets the auxtype to assign when a received file’s filetype/auxtype is unknown.

Set AutoReceive State XE "Set AutoReceive" \i

 XE "AutoReceive" \i
State can be Off, On, BPlus, or Zmodem

Controls the “Auto B+” and “Auto Z” checkboxes.

Off: Turns off both checkboxes.
On: Turns on both checkboxes.
BPlus: Turns on the BPlus checkbox.
Zmodem: Turns on the Zmodem checkbox.

Set BinaryII State XE "Set BinaryII" \i

 XE "BinaryII" \i
State can be Downloads, Uploads, Off, or On

Works as described in the Scripting manual, except Downloads and On will no longer uncheck the “Resume Transfers” checkbox (because resume now works regardless of the receiver’s BinaryII setting).

Set SendLines State XE "Set SendLines" \i

 XE "SendLines" \i
State can be Off or On, or a number from 10-65535

Controls how text files and ScriptEditors are sent. Off sends files as-is; On splits paragraphs into lines of approximately 73 characters each; a Value splits paragraphs into lines of approximately the specified number of characters.

Dialing XE "Dialing" \i
Dial Service "PhonebookEntry" XE "Dial Service" \i

 XE "Service (Dial)" \i
Instead of generating a script error, now the Failed flag is set if the specified phonebook entry does not exist.

Dial Entry Value XE "Dial Entry" \i

 XE "Entry (Dial)" \i
Instead of generating a script error, now the Failed flag is set if the specified phonebook entry does not exist.

Get ServiceInfo "PhonebookEntry" XE "Get ServiceInfo" \i

 XE "ServiceInfo" \i
Establishes the port settings for the specified phonebook entry, and updates all the $PB_ replacement items so they reflect the information stored in the phonebook entry. The Failed flag is set if the specified phonebook entry does not exist.

Connected XE "Connected" \i
Scripts should issue this command any time they establish a connection with another computer or modem.

Onhook XE "Onhook" \i
Scripts should issue this command any time they close a connection (or when they know a connection has been broken) with another computer or modem.

TCP/IP Commands

Note: When in Telnet mode, the setting of Half Duplex will be ignored.

Switch TCP/IP

Disconnects the Serial Port and switches control to the TCP/IP environment. Note that this may terminate an active Serial connection.

TCPConnect

If currently offline, makes a TCP/IP link through the the TCP/IP CDev. It simply makes the initial link to your ISP, it does not open a socket Connection to a target host. If TCP/IP was already linked, this command will do nothing and will not set the Failed flag. The Failed flag will be set if the link failed.

TCPDisconnect

If currently online, will disconnect all active Connections and then disconnect the line from your your ISP. If TCP/IP was already disconnected, this command will do nothing and will not set the Failed flag. The Failed flag will be set if the command failed to disconnect.

Open TCPSocket "AddressString" Value VarName MenuName
"AddressString" is a dotted address in the format "123.456.789.123:23" or

"AddressString" is an address in the format "delphi.com"

Value can be from 1 to 3 (Mode)

 1 = data returned through port vectors

 2 = data returned through port vectors (Telnet mode)

 3 = data only returned through Get TCPData and Get TCPHandle

Varname returns a Socket number

The optional MenuName is a String maximum 18 characters

Links if not already Linked (See TCPConnect), and then opens a connection to the IP address and port in "AddressString" using the Mode given in Value. Up to 32 connections may be open at once. See documentation for TCP/IP for further details.

If the optional MenuName is given, it will be used to name the inserted menu item for that connection. The Timeout setting will be respected, with a maximum wait of 60 seconds. The Failed flag will be set if the Connection could not be opened.

Close TCPSocket Value
Value must be a valid Connection Number (Socket)

Closes the Connection. Sets the Failed flag if the Connection was not open or could not be closed.

Check TCPSockets

Checks through all the active Sockets, and if any have been closed, and there is no data waiting to be sent or received, will log them out and return any TCPClosedResponse strings that have been set.

Set TCPActiveSocket Value Value1
Value must be a valid Connection Number (Socket)

The optional Value1 can be from 1 to 3 (Mode)

Changes the active connection for the data streams. This allows you to control a number of connections simultaneously. Sets the Failed flag if the Connection is not open.

Get TCPData "LineEndMarkerString" VarName Socket
"LineEndMarkerString" is a unique set of characters

Control and Quote characters are stripped from the returned Varname.

The Socket is optional.

TCP/IP must be active and an online connection must be made before this command will complete. Returns up to 256 characters from the active Connection or the optional Socket. When the LineEndMarkerString is received, the line is stored into the specified Varname. The LineEndMarkerString is not included in the returned Varname. You may wish to set Mode 3 for use with this command. Sets the Failed flag if not online or no data was waiting.

Get TCPEditor "LineEndMarkerString" EditorNumber Socket

"LineEndMarkerString" is a unique set of characters

Full 8 bit data integrity is retained in the returned EditorNumber
The Socket is optional.

TCP/IP must be active and an online link must be made before this command will complete. Accepts characters from the active Connection or the optional Socket. When the LineEndMarkerString is received the line is stored into the specified EditorNumber. The LineEndMarkerString is not included in the returned EditorNumber. You may wish to set Mode 3 for use with this command. Sets the Failed flag if not online or no data was waiting.

Get TCPHandle EditorNumber Socket VarName

Full 8 bit data integrity is retained in the returned EditorNumber
The Socket is required.

TCP/IP must be active and an online link must be made before this command will complete. Accepts characters from the designated Socket or the active connection if Socket = 0. If no data was waiting, the Editor will be returned empty. The VarName returns the current Status value for the socket. You may wish to set Mode 3 for use with this command. Sets the Failed flag if not online.

Send TCPData "String" Socket

Socket is optional

Sends the String directly to the active Connection or the optional Socket. No Telnet translation is made by this command. Sets the Failed flag if not online.

Send TCPEditor EditorNumber Socket

Socket is optional

Sends the EditorNumber directly to the active Connection or the optional Socket. No Telnet translation is made by this command. Sets the Failed flag if not online.

Flush TCPSendBuffer

Flushes any waiting data in the TCPSendBuffer to the active Connection. Data is normally flushed at each character in Telnet mode, or when the TCPFlushChar being seen in the output flow. This command allows any waiting data to be flushed before that character is seen. Sets the Failed flag if not online.

Get TCPStatus Value VarName
Value must be a valid Connection Number (Socket)

Returns the Status of the Connection:

 0 = tcpsCLOSED
1 = tcpsLISTEN

 2 = tcpsSYNSENT
3 = tcpsSYNRCVD

 4 = tcpsESTABLISHED
5 = tcpsFINWAIT1

 6 = tcpsFINWAIT2
7 = tcpsCLOSEWAIT

 8 = tcpsLASTACK
9 = tcpsCLOSING

 10 = tcpsTIMEWAIT

See the TCP/IP documentation for more details. Sets the Failed flag if the Connection is not open or if not online.

Set TCPClosedResponse Value "String"
Value must be a valid Connection Number (Socket)

If the Connection closes, the "String" will be inserted into the input stream. This allows scripts to monitor a Connection by using a WaitFor or Trigger command. Sets the Failed flag if the Connection is not open or if not online.

Set TCPEOLTranslation Value Value1

Value can be from 0 to 255

Value1 is optional and can be from 0 to 255

Normally the EOL character will be sent “as is” to the active Connection. By changing its value, you can translate this to a specific character required by a particular system. You might wish to change a Return to a Return/Line Feed pair, or a Return to a Line Feed.

Set TCPFlushChar Value

Value can be from 0 to 255

Sets the character that is used to trigger flushing the output buffer to the active Connection for modes 1 and 3. This defaults to a Return.

Set TCPFlushFrequency Value
Value can be from 0 to 512

The output buffer can hold a maximum of 512 characters. You can change this value to flush data more frequently to the active Connection. Note that in Telnet mode 2, the buffer is flushed as each character is sent.

Set TCPMessages State
State can be Off, On

If connecting manually, you can turn off the display of the various progress messages shown by TCP/IP.

Set TCPNotify State

State can be Off, On

Normally a message is displayed on screen and put into the capture buffer when a service has been manually switched. This turns on and off the display of that message.

Set TCPReconnect State
State can be Off, On

Controls whether TCP/IP attempts to reconnect or not when a Connection is started.

Get TCPServiceEntry Value VarName
Value can be from 1 to size of Service list

Value can also be an entry name from the list

Extracts the “dotted address” or “host.name” of the specified Service list entry and stores it in the specified variable. If the entry does not exist, then the Failed will be set. If a name was specified, the match will respect the current state of the CaseSensitive flag.

Script and Program Control XE "Script Control" \i

 XE "Program Control" \i
Run "FoldernameFilename" Label XE "Run" \i
Label is optional

Resets many script parameters then runs the specified script. If Label is given control passes to the specified label in the new script. If the label does not exist then a “label not found” error occurs.

Chain "FoldernameFilename" Label XE "Chain" \i
Label is optional

Passes control (or “Chains”) to the specified script, preserving all the settings that are normally reset when a script is Run. If Label is given then control is passed to the specified label in the new script. If the label does not exist then a “label not found” error occurs. REMINDER: Chaining to a script does not preserve the current For/Next loops, nor does it preserve the “Gosub” stack.

Chainbacks can now be nested to 16 levels. This allows much more flexible use of the “Chain’ command, as using shorter scripts will always speed script execution.

Chainback XE "Chainback" \i
Loads the script that chained to the currently-running script ($LastScriptPath$LastScriptFile) and resumes executing script commands at the statement after the Chain command. If the currently-running script was not chained to, then Chainback stops the script.

POP Chainback

POP All Chainback

These commands “pop” or remove one or all of the Chainback levels.

Launch / Exit / Quit XE "Launch" \i

 XE "Exit" \i

 XE "Quit" \i
These commands now set prefix 0 and 8 to the folder of the application being launched, which resolves path problems when launching some ProDOS 8 programs.

Quit2 XE "Quit2" \i
This command works exactly like the “Quit” command, except it does not hangup first.

Variables

CompareStrings "String1" "String2" Varname XE "CompareStrings" \i
Compares the two strings using the Toolbox’s _CompareStrings command, which is used when sorting most lists (filenames, etc.). The compare is always case insensitive.

Make CaseChange "String" Value Varname XE "Make CaseChange" \i

 XE "CaseChange" \i
Value can be a number 1-4

Depending on the Value, makes a change to the case of String and returns the results in Varname. The valid Values are:

1 = UPPERCASE
2 = lowercase
3 = First letter of each sentence is capitalized. Like this.
4 = Capitalize Each Word

Store Variables XE "Store Variables" \i

 XE "Variables:Store Variables" \i
Shortcut: Store Vars
Stores the current values of the ten numbered variables (0 through 9). It does not store any named variables.

Restore Variables XE "Restore Variables" \i

 XE "Variables:Restore Variables" \i
Shortcut: Restore Vars
Restores the ten numbered variables (0 through 9) to the previously-stored values. It has no effect on any named variables.

Clear Variables Varname1, Varname2 … Varname# XE "Clear Variables" \i

 XE "Variables:Clear Variables" \i
Shortcut: Clear Vars
Varnames are optional

Clears the specified variable names to "". If no variable names are specified, the ten numbered variables (0 through 9) are cleared to "".

Delete Variables Varname1, Varname2 … Varname# XE "Delete Variables" \i

 XE "Variables:Delete Variables" \i
Shortcut: Delete Vars Varname1, Varname2 … Varname#
Deletes the specified variable name(s) from the internal table of variable names.

Match String "TheLine" "String1" … "String#" XE "Match String" \i

 XE "String:Match String" \i
Looks to see if String1 exists anywhere within TheLine. If so then $Matched is set to “1”, $MatchString is set to String1, and the Failed flag is cleared. If String1 is not found within TheLine then the other strings are checked (the only limit on the number of strings is how many can fit into the script expansion buffer).

If no match is found then $Matched is set to “0”, $MatchString is set to "", and the Failed flag is set.

Strip Spaces "TheString" Varname XE "Strip Spaces" \i

 XE "String:Strip Spaces" \i
Deletes all space characters from TheString and stores the results in Varname.

Trim Spaces "TheString" Varname XE "Trim Spaces" \i

 XE "String:Trim Spaces" \i
Deletes only the leading and trailing spaces from TheString and stores the results in Varname.

Overlay String "String1" "String2" Start Varname XE "Overlay String" \i

 XE "String:Overlay String" \i
Start can be from 1 to 256

Overlays String2 on top of String1, starting at character position Start, and stores the result string into the specified Varname. The Failed flag is set if String2 cannot be overlaid into the existing space used by String1.

For example:

Overlay String "12345" "ABC" 1 9

var 9 is now "ABC45"

Overlay String "12345" "ABC" 3 9

var 9 is now "12ABC"

Overlay String "12345" "ABC" 4 9

the Failed flag is set because "ABC" cannot be overlaid onto "12345" starting at position 4 (var 9 is set to "12345")

Insert String "Original" "New" Position Varname XE "Insert String" \i

 XE "String:Insert String" \i
Position can be from 1 to 256

Inserts the New string into the Original string at character Position. If the combined string exceeds 256 characters the result is truncated to 256 characters and the Failed flag is set.

Example:

Loop

Display "Insert where? "; Input Line Position

Insert String "****" "NEW" $Position Result

Display "Result is '$Result'.^M"; Goto Loop

the results:

0 - script error; run the script again

1 - NEW****

2 - *NEW***

3 - **NEW**

4 - ***NEW*

5 - ****NEW

6 through 256 - ****NEW

257 or higher - script error

Delete String "TheString" Start Length Varname XE "Delete String" \i

 XE "String:Delete String" \i
Start can be from 1 to 256

Length can be from 1 to 256

Deletes Length characters from TheString, starting at position Start. If Start is 0 or Start is greater than the length of TheString the Failed flag is set and Varname is set to TheString.

Example:

Delete String "12345" 1 3 9

var 9's now "45"

Delete String "12345" 3 3 9

var 9's now "12"

Delete String "12345" 3 256 9

var 9's now "12"

Evaluate "Expression" Varname XE "Evaluate" \i
Evaluates the given string expression and sets Varname to the result. Valid operators are () + – * / ^ ÷ and – (the last two operators are Option-/ and Option-Minus, respectively). NOTE: To use the “power of” operator (^) you must type it twice (^^).

The calculations are made on whole Integer numbers, so any remainders from divisions are lost, with the number being rounded down.

The Failed flag is set if Expression is not a valid math expression (i.e. there are characters other than numbers, operators or spaces, the parentheses are not balanced, etc.). The Failed flag is also set if any intermediate calculation overflows 32 bits (4,294,967,296), or if parsing the expression overflows the internal 256-byte parsing buffer.

Finally, the Failed flag is set if the result is a negative number, because negative numbers are not valid elsewhere in Spectrum’s scripting language. However, in this case the result Varname will contain the positive answer (i.e. if an expression is calculated to be –5 then the Failed flag will be set and Varname will be set to 5).

Example:

Evaluate "2+(3^^4)-2+(3^^2)-3*4+(6/3+(12/4))" Result

Display "The result is $Result.^M"

Evaluate "2^^$Day" Result

Display "The result is $Result.^M"

Getting Input XE "Getting Input" \i
Ask1 "Question" "Button1" VarName {Value} XE "Ask" \i
Ask2 "Question" "Button1" "Button2" VarName {Value} XE "Ask" \i
Ask3 "Question" "Button1" "Button2" "Button3" VarName {Value} XE "Ask" \i
Question is a string up to 68 characters long

Button# is a string up to 12 characters long

Value is a number 0 to 65535

Version 2.0: Instead of the question being restricted to 68 characters long, these commands now accept questions up to 255 characters long (the size of the alert window is adjusted automatically so the message will fit).

Version 2.1: Added an optional value that specifies the number of seconds to wait for a response. If the user doesn’t respond within that many seconds, the default button is clicked automatically. If there is no default button, and all the buttons have the same first character, then a SysBeep occurs and the Ask alert will not go away.

Ask1 and Ask2 use the “cool” button layout. Due to formatting problems with Ask3 if the button names are more than a few characters, Ask3 still uses the older button layout.

Waitfor String "String1" "String2" … "String7" "String8" XE "Waitfor String" \i

 XE "String:Waitfor String" \i
•
Comments after the strings were being seen as target strings. Fixed.

•
Double letters could cause Waitfor String not to see a string it was waiting for. Fixed.

Set IdleTimer Value XE "Set IdleTimer" \i

 XE "IdleTimer" \i
Value can be from 0 to 65535

When waiting for input using any “Getting Input” command that gets data from the port, Spectrum monitors the port activity. If the port is idle for Value seconds then the command will fail and Spectrum continues executing the script.

This command works in conjunction with the Timeout value (Timeout fails the command after Value seconds regardless of port activity, whereas IdleTimer fails the command after Value seconds of no port activity).

Example:

Set Timeout 120 # 2 minutes

Set IdleTimer 30 # 30 seconds
Transmit "Send me the entire file list!^M"

Waitfor String "END OF LIST"; If NOT Failed Then Display "The entire list was received within 2 minutes."; Stop Script

otherwise the Waitfor command failed...

On $FailureCode GotoNext TimedOut, IdledOut

if here then $FailureCode is 0...

Display "Failed for some other reason (a Hitzone was probably clicked)."; Stop Script

TimedOut - after 2 minutes there's still port activity
Display "Still receiving the list."; Stop Script

IdledOut - gone 30 seconds with no port activity
Display "Either the list is complete but something happened that the 'end of list' string was not seen, OR the host is disconnected/lost in space."; Stop Script

Read Char Varname XE "Read Char" \i
Accepts one character from the port and stores it into the specified variable.

If a timeout was used and time ran out, the Failed flag is set.

Read Line Varname XE "Read Line" \i
Accepts up to 256 characters from the port. When a Return character is received the line is stored into the specified variable.

If a timeout was used and time ran out, the Failed flag is set and the specified variable contains the data that was read so far.

Branching and Loops XE "Branching and Loops" \i
IMPORTANT: The script keyword “GotoNext” cannot be separated as “Goto Next” (version 1 was more forgiving of this error; version 2 will instead attempt to GOTO a label named “Next”).

On CarrierLoss Goto Label XE "On CarrierLoss" \i

 XE "CarrierLoss" \i
On CarrierLoss GotoNext Label XE "On CarrierLoss" \i

 XE "CarrierLoss" \i
If this command is active and Spectrum detects the transition from having a carrier to having no carrier, then control will be passed to the specified label in the currently-running script.

This command does nothing unless “DCD Is Valid” is checked, the modem has been initialized properly, and the modem is connected with a properly-wired modem cable.

On CompareStrings "String1" "String2" Goto LessLabel, EqualLabel, MoreLabel XE "On CompareStrings" \i
On CompareStrings "String1" "String2" GotoNext LessLabel, EqualLabel, MoreLabel XE "On CompareStrings" \i
Compares the two strings using the Toolbox’s _CompareStrings command, which is used when sorting most lists (filenames, etc.). Based on the result of the comparison, script control jumps to LessLabel, EqualLabel, or MoreLabel.

Set Labels State
State can be Off or On

Works as before, but adds support for an extended keyboard: Pressing function keys 1 through 15 will attempt to “Gosub” to that label.

On Value Goto Label1, Label2 … Label# XE "On Value" \i
On Value GotoNext Label1, Label2 … Label# XE "On Value" \i
On Value Gosub Label1, Label2 … Label# XE "On Value" \i
On Value GosubNext Label1, Label2 … Label# XE "On Value" \i
These commands have been modified to allow as many labels as will fit in the script line buffer (currently 636 characters, minus the number of characters used for the command itself).

If Value is 0 or is greater than the number of labels supplied, the Failed flag is set and control continues to the next statement. For example, the Display statement would be executed in this script:

On 5 Goto One, Two; Display "Didn't go anywhere"; Stop Script

For LoopNumber Start Stop Step XE "For/Next Loops" \i
Works like version 1, except if the initial Start value is less than the initial Stop value the loop counts.

Example:

Display "1 to 100 by twos:^M^J"

For 0 1 100 2; Display "$ForValue0^I"; Next 0

Display "^M^J^M^J100 to 1 by twos:^M^J"

For 0 100 1 2; Display "$ForValue0^I"; Next 0

On Compare Value1 Value2 GoXXX LessLabel, EqualLabel, MoreLabel XE "On Compare" \i

 XE "Compare" \i
GoXXX can be Goto, GotoNext, Gosub, or GosubNext

This command is similar to the Compare command, except that the result can be acted on immediately (an intermediate variable to hold the result is not required):

If Value1 < Value2 then control passes to LessLabel
If Value1 = Value2 then control passes to EqualLabel
If Value1 > Value2 then control passes to MoreLabel
Conditional Tests XE "Conditional Tests" \i
If False Varname Then Statement XE "If False" \i

 XE "False" \i
If Varname is empty ("") or is “0” then Statement is executed.

If True Varname Then Statement XE "If True" \i

 XE "True" \i
If Varname is not empty ("") and is not “0” then Statement is executed.

If Not Contains "ShortString" "LongString" Then Statement XE "If Not Contains" \i
If ShortString is longer than LongString then Statement is now executed.

If Null Varname Then Statement XE "If Null" \i

 XE "Null" \i
If Null "String" Then Statement XE "If Null" \i

 XE "Null" \i
If Null $EditorHandle# Then Statement XE "If Null" \i

 XE "Null" \i
If a variable name is supplied and the variable is empty ("") then Statement is executed.

If a string is supplied (the current quote delimiters are required) and the string is empty ("") then Statement is executed.

If an $EditorHandle# replacement item is supplied and the specified editor is empty ($EditorSize# is 0) then Statement is executed.

If Not Null Varname Then Statement XE "If Not Null" \i

 XE "Null" \i
If Not Null "String" Then Statement XE "If Not Null" \i

 XE "Null" \i
If Not Null $EditorHandle# Then Statement XE "If Not Null" \i

 XE "Null" \i
If a variable name is supplied and the variable is not empty then Statement is executed.

If a string is supplied (the current quote delimiters are required) and the string is not empty then Statement is executed.

If an $EditorHandle# replacement item is supplied and the specified editor is not empty then Statement is executed.

If Defined Varname Then Statement XE "If Defined" \i

 XE "Defined" \i
If the specified variable name has been defined then Statement is executed.

If Not Defined Varname Then Statement XE "If Not Defined" \i

 XE "Defined" \i
If the specified variable name has not been defined then Statement is executed.

If Desktop Then Statement XE "If Desktop" \i

 XE "Desktop" \i
If the 640 mode SHR display with menu bar is showing then Statement is executed.

If Not Desktop Then Statement XE "If Not Desktop" \i

 XE "Desktop" \i
If the 640 mode SHR display with menu bar is not showing then Statement is executed.

Else Statement
All “if” comparisons set a special flag that remembers whether the “if” statement was true or false. The “else” command tests this flag and executes the rest of the line if the previous “if” statement was false. NOTE: “Else” is a completely separate command; it is not an optional part of an “if” statement!
Using “else” clears the special flag, so multiple “else” statements do not work.

Example:

If Equal "A" "B" Then Display "EQUAL^M^J"

ELSE Display "NOT equal^M^J"

ELSE Display "This will never been displayed.^M^J"

change "B" to "A" and run again

also try using "If NOT Equal" and other conditional tests

Screen Appearance XE "Screen Appearance" \i
Set Flush State XE "Set Flush" \i

 XE "Flush" \i
If Flush was On in version 1, processing incoming data had greater priority over executing the script commands. In version 2 both functions are approximately equal priority, so script commands will execute regularly even if lots of incoming data is pending.

Set ScreenBlank State XE "Set ScreenBlank" \i

 XE "ScreenBlank" \i
State can be Off, On, or Auto

Spectrum now completely controls the blanking (previously if Twilight II was active Spectrum would ask it to blank the screen). Also, the border color is now set to black when blanked.

Set ScreenBlank OFF now just broadcasts the “system​Says​Force​Undim” IPC message, so if Twilight II (for example) blanks in the background, your script can include a Set ScreenBlank OFF command to force the screen to be unblanked. NOTE: It is acceptable to issue “Set Screen OFF” even if the screen is already unblanked.

Set ScreenBypass Value
Value can be On or Off

Controls whether data is sent to the screen or not. If set to ‘Off’, it allows script execution to continue with a closed screen. Note that this is not the same as “Set Screen Off” as the “WaitFor” and “Trigger” commands will still operate. Effectively it operates as though a screen was open, but with no data showing on screen.

Set XferStatus Value
Value can be On or Off

Controls whether the Protocol Transfer Status box is shown during a file transfer.

Capture Buffer Control XE "Capture Buffer Control" \i
Load Buffer "FoldernameFilename" XE "Load Buffer" \i

 XE "Capture Buffer" \i

 XE "Buffer" \i
•
This command would overrun memory if the file was too big to be loaded. Fixed.

Append CaptureFile "FoldernameFilename" XE "Append CaptureFile" \i

 XE "CaptureFile" \i

 XE "Capture Buffer" \i

 XE "Buffer" \i
Opens the specified text file and begins capturing incoming data to the end of it.

What’s new: If the specified file does not exist it will be created automatically. If the specified file is not a text file then a script error is generated.

Set AutoSave "FoldernameFilename" XE "Set AutoSave" \i

 XE "AutoSave" \i

 XE "Capture Buffer" \i

 XE "Buffer" \i
If AutoSave is specified, and AutoSaveBuffer is on, and Append is on, whenever the capture buffer fills it will be automatically appended to the AutoSave folder and filename.

In version 1, if the AutoSave folder or filename was invalid, Spectrum would not save the buffer. In version 2 Spectrum gives the user the opportunity to manually Clear, Save, or Append it.

Transferring Files XE "Transferring Files" \i

 XE "File:File Transfer" \i
Receive File Protocol XE "Receive" \i
•
When receiving Zmodem, if the host did not start the transfer, or aborted the transfer before Spectrum’s file transfer status window appeared, the script would pause for a very long time. Fixed.

Send File ZBatch "File1" "File2" ... "File3”
Send File ZBatch ScriptEditor
Send File YBatch "File1" "File2" ... "File3"
Send File YBatch ScriptEditor
File is the path to a file or a file in the Send file folder

ScriptEditor is a value from 0-9

Batch sends multiple files. These commands replace the functionality of the BatchXfer XCMD.

OS Utilities XE "OS Utilities" \i
Rename "Foldername1Filename1" "Foldername1Filename2" XE "Rename" \i
•
Renaming “FILENAME” to “Filename” would raise an error. Now the case is changed without generating an error.

Copy File "Foldername1Filename1" "Foldername2Filename2" XE "Copy File" \i
Can now copy even very large (“tree”) files, where previously it showed an “access not allowed” error.

•
Now handles Macintosh-style OptionLists.

•
Now preserves original file creation date and time.

Get FileInfo "FoldernameFilename" Varname XE "Get FileInfo" \i
Works as documented, with the following additions to the returned string:

	Start
	Length
	Information

	59
	6
	Creation date in the format YYMMDD

	65
	4
	Creation time in the format HHMM

	69
	6
	Modification date in the format YYMMDD

	75
	4
	Modification time in the format HHMM

Get FileInfo2 "FoldernameFilename" VarName
Complements the “Get FileInfo” command, but returns the LongYear instead of the two digit short year. This makes the command Y2K compliant.

Set FileInfo "FoldernameFilename" "TT/AAAA" XE "Set FileInfo" \i
TT is a hexadecimal filetype 00-FF

AAAA is an optional hexadecimal auxtype 0000-FFFF

Sets the specified file’s filetype and auxtype. The auxtype (AAAA) can be omitted and only the filetype will be changed.

Get MacFileInfo "FoldernameFilename" Varname XE "Get MacFileInfo" \i
Sets Varname to contain the Macintosh file’s Type and Creator. The Failed flag will be set if the file is not an extended file.

NOTE: If the file has a “pdos” creator, Get MacFileInfo may return the filetype holding ASCII values that are not printable. This is because with a creator of “pdos” you can have the filetype and auxtype embedded as Hex data in the four characters of the Mac filetype.

Set MacFileInfo "FoldernameFilename" "TypeCrtr" XE "Set MacFileInfo" \i
If the specified file is a Macintosh file then this command will set the file’s Type and Creator information.

Show File "FoldernameFilename" Start Stop XE "Show File" \i
Start and Stop are optional

As in version 1, this command displays the file to the screen (and outputs it to the port if the Echo option is on). What’s new:

•
The optional Start and Stop values let you show a specific portion of the file.

•
While showing a file, the Spacebar will alternately pause and restart the display.

Get File "PromptString" Kind Varname XE "Get File" \i
Works as it did in version 1, but Kind can now also be a 3 or 4.

When using a Kind of 3 the dialog box displays launchable applications and also contains two checkboxes that let the user control whether the script should hang up before launching ($DoHangup), and whether quitting the next application should return to Spectrum ($DoReturn).

When using a Kind of 4 the dialog box displays Teach and text files only (not Appleworks Classic).

Copy File "SourcePath" "TargetPath" Value
Value is optional

Value = 1 copies data fork

Value = 2 copies resource fork

Value = 3 copies both forks

Using the optional Value, you can copy either the data fork, resource fork, or both forks. In all cases, the target file must already exist, or an error will be generated. The resource fork will be created if needed.

JudgeName "FoldernameFilename" VarName
Expands the FoldernameFilename and parses it to suit the FST of the destination volume pointed at by Foldername.

Get Multifile "PromptString" Value ScriptEditor
Value = 0 Any file

Value = 1 Text only

Value = 2 Text, AppleWorks, Teach

Value = 3 Launchable Applications

Value = 4 Text and Teach

ScriptEditor is a value from 0-9

This complements the “Get File” command. It is primarily intended for use by the “Send Batch” commands.

Reading and Writing Files

NOTE: Scripts can now open 10 files and 10 catalogs (previous limits were 4 files and 4 catalogs).

Read File FileNumber Varname NumBytes XE "Read File" \i
FileNumber can be from 0 to 9

NumBytes is optional; if used it is a value from 1-256

If the optional NumBytes parameter is not provided then this command behaves exactly as it did in version 1.

If NumBytes is specified then this command reads exactly that many bytes from the file (it does not check for Return). If reading NumBytes passes the end of the file, the Failed flag is set and the variable contains the bytes that were read successfully.

Write File FileNumber "String" NumBytes XE "Write File" \i
FileNumber can be from 0 to 9

NumBytes is optional; if used it is a value from 1-256

If NumBytes is not specified then all the characters of the String are written; if NumBytes is specified then only the first NumBytes characters of the String are written.

Set FilePos FileNumber Position XE "Set FilePos" \i

 XE "FilePos" \i
FileNumber can be from 0 to 9

After opening a file you can use this command to quickly move the file marker to a specific character position. For example, Set FilePos 0 83 will set the file marker to the 83rd character in file 0.

If you set to a character position that is past the end of a file, the file length will not get extended until you begin writing to that position.

For example, this script…

Open File 0 ":Ram5:NewFile"

Set FilePos 0 10000

Set FilePos 0 10; Write File 0 "Word.^M"

Close File 0

…will result in a file that is only 15 characters long, not 10,000. To extend a file Spectrum writes as many Return characters as necessary (in the example above, Return characters are written to position 1 through 9, so the “W” of “Word” will start at the character position that was set).

Search File FileNumber "String" XE "Search File" \i
FileNumber can be from 0 to 9

Searches the given file for the given string. The search starts at the current file position and proceeds toward the end of the file.

If String is found then the Failed flag is cleared and the file marker is set to the first character after the string. If String is not found then the Failed flag is set.

Reading Catalogs XE "Read Catalog" \i

 XE "Directories (Reading)" \i

 XE "Folders (Reading)" \i

 XE "Catalogs (Reading)" \i
Read Catalog CatalogNumber Varname XE "Read Catalog" \i

 XE "Catalog" \i
The information that is returned has been extended—see “Get FileInfo” in the OS Utilities section.

Read Catalog2 CatalogNumber VarName
Complements the “Read Catalog” command, but returns the LongYear instead of the two digit short year. This makes the command Y2K compliant.

Script Editor XE "Script Editor" \i

 XE "Editor" \i
All script editor commands have been modified to allow an optional EditorNumber, a value from 0-9. If EditorNumber is not present, editor number 0 is assumed:

Clear ScriptEditor EditorNumber XE "Clear ScriptEditor" \i

 XE "Script Editor" \i
Send ScriptEditor EditorNumber XE "Send ScriptEditor" \i

 XE "Script Editor" \i
Print ScriptEditor EditorNumber XE "Print ScriptEditor" \i

 XE "Script Editor" \i
Apply Replace EditorNumber "FindString" "ReplaceString" Varname XE "Apply Replace" \i

 XE "Script Editor" \i
Apply LowASCII EditorNumber XE "Apply LowASCII" \i

 XE "Script Editor" \i
Apply RemoveControls EditorNumber XE "Apply RemoveControls" \i

 XE "Script Editor" \i
Apply LFsToCRs EditorNumber XE "Apply LFsToCRs" \i

 XE "Script Editor" \i
Apply RemoveSpaces EditorNumber XE "Apply RemoveSpaces" \i

 XE "Script Editor" \i
Apply Special EditorNumber Value XE "Apply Special" \i

 XE "Script Editor" \i
Apply Format EditorNumber Value XE "Apply Format" \i

 XE "Script Editor" \i
Append ScriptEditor EditorNumber "Item" Kind XE "Append ScriptEditor" \i

 XE "Script Editor" \i
Load ScriptEditor EditorNumber "Item" Kind XE "Load ScriptEditor" \i

 XE "Script Editor" \i
EditorNumber is optional; if used it is a value 0-9

Item can be a FoldernameFilename, or can be ::Scrollback, ::Buffer, or ::Clipboard
Kind is an optional Varname

Loads the specified data into the given ScriptEditor (Load replaces the script editor contents, while Append adds the new data to the end of the specified script editor).

If Item is a file on disk, an optional Kind varname can be used which will be set to indicate what kind of file was loaded: 1=Text, 2=Teach, 3=AppleWorks Classic.

•
This command can now load Macintosh text files, even if the file has a Macintosh resource fork.

•
If a Teach file was loaded, then a Text file was loaded, the ScriptEditor still thought it had a Teach file in it. Fixed.

Save ScriptEditor EditorNumber "FoldernameFilename" Kind XE "Save ScriptEditor" \i

 XE "Script Editor" \i
EditorNumber is optional; if used it is a value 0-9

Kind is optional; 1 saves as a Text file; 2 saves as a Teach file; 3 saves as an AppleWorks Classic file

Saves the specified scripteditor to disk. If Kind is not specified then the format is Text (if a text or AppleWorks Classic file was loaded) or Teach (if a Teach file was loaded). Otherwise the Kind value forces a specific file type to be saved (only Teach saves any style information; the other formats only save the text from the specified script editor).

Create ScriptEditor EditorNumber XE "Create ScriptEditor" \i

 XE "Script Editor" \i
Creates an empty scripteditor. If the scripteditor is already in use then the Failed flag is set and the existing scripteditor is not changed.

Show ScriptEditor EditorNumber XE "Show ScriptEditor" \i

 XE "Script Editor" \i
Displays the specified scripteditor on the screen. Holding down the Option key pauses the display; pressing Escape cancels the display.

Clear SEDirty EditorNumber XE "Clear SEDirty" \i

 XE "SEDirty" \i

 XE "Script Editor" \i
Clears the “dirty” flag for the specified editor.

Error Control XE "Error Control" \i
ResumeNext XE "ResumeNext" \i
Use only in an “On Error Goto” procedure

Continues running the script after the command that caused the error. NOTE: This can be confusing; it is intended for advanced script authors.
Script Interpretation XE "Script Interpretation" \i
Set Quote Character XE "Set Quote" \i

 XE "Quote" \i
A script error could occur when the quote character was set to something other than the standard character (") and a line contained a semicolon:

Set Quote %

Display %This is fine.%

Display %This ; failed.%

This has been fixed (i.e. the second Display command will no longer fail).

Set Replacement Character
Changes the value normally used for the “$” substitution character.

Advanced Commands XE "Advanced Commands" \i
Store Screen XE "Store Screen" \i
Saves the current screen characters to an internal buffer. The Failed flag is set if a display is not open, or if the opened display does not support the feature.

Restore Screen XE "Restore Screen" \i
Restores the screen characters from the previously-stored screen. NOTE: This command closes and re-opens the Online Display for a proper update to occur. This is quick, but does cause a flicker on the screen.
The Failed flag is set if a display is not open, or if the opened display does not support the feature.

Define Trigger Value "String" XE "Define Trigger" \i

 XE "Trigger" \i
Value can be a number 1 to 16

String can be up to 256 characters

Defines a sequence of characters that Spectrum should watch for whenever it is processing incoming data. If String is "" then the trigger is deleted, just as Delete Trigger

If the character sequence is seen and an “On Trigger Goto…” command is active, control passes to the specified Label.

Note that triggers take precedence over the active command. For example, if “Waitfor String” is currently waiting for “password” and a trigger has been defined to watch for “sword”, as soon as the “d” arrives the trigger causes the “Waitfor String” command to fail (the Failed flag will be set) and control will pass to the trigger handler.

Get TriggerInfo Value Varname XE "Get TriggerInfo" \i

 XE "TriggerInfo" \i

 XE "Trigger" \i
Value can be a number 1 to 16

Sets Varname to the currently-defined trigger string.

Delete Trigger Value1, Value2, … Value# XE "Delete Trigger" \i

 XE "Trigger" \i
each Value can be a number 1 to 16

Deletes the specified trigger number so its associated trigger string is no longer searched for.

Delete Triggers XE "Delete Triggers" \i

 XE "Trigger" \i
Deletes all the triggers so no trigger is searched for.

On Trigger Goto Label XE "On Trigger" \i
On Trigger GotoNext Label XE "On Trigger" \i
When a defined trigger is seen, control jumps to the specified Label in the currently-active script, and the $Trigger replacement item identifies which trigger was seen. As with other “On X Goto” commands, “Resume” and “ResumeNext” will resume script execution where it was interrupted.

At the entry to Label, if the Failed flag is set then a script command was interrupted when the trigger was seen. If the Failed flag is clear then the trigger was seen while Spectrum was flushing data to the screen.

Open ResFile FileNum "FoldernameFilename" XE "Open ResFile" \i

 XE "ResFile" \i
FileNum can be from 0 to 9

Opens the resource fork of the specified file, which adds it to Spectrum’s resource search path. The Failed flag is set if the specified file’s resource fork could not be opened.

If a script frequently uses commands that access resources out of a particular file (such as Draw Picture and Draw Icon) the script can be sped up by opening the resource file in advance. This is much faster because Spectrum doesn’t have to open and close the resource file around each command; Spectrum will instead just always find the resource in memory (the most-recently opened resource file is searched first).

This command lets scripts create and store all its related resources in one file. However, because these resources are opened and installed at the head of Spectrum’s resource search path, script authors who use this feature must take care not to use resource ID numbers that conflict with any of Spectrum’s resources (otherwise Strange Things may happen).

When creating a resource file for use with Spectrum, use resource IDs in the range $7001 and above to avoid conflicts. NOTE: Resource names are case sensitive.

Close ResFile FileNum XE "Close ResFile" \i

 XE "ResFile" \i
FileNum can be from 0 to 9

Closes the specified resource file.

Close ResFiles XE "Close ResFiles" \i

 XE "ResFile" \i
Closes all resource files opened with the Open ResFile command.

Set Failed XE "Set Failed" \i

 XE "Failed" \i
Sets the Failed flag.

Clear Failed XE "Clear Failed" \i

 XE "Failed" \i
Clears the Failed flag.

Shut Down XE "Shut Down" \i
Closes any files opened by the script, calls the AutoSaveBuffer routine, stops the script, then shuts down the system.

Set DiskErrors State XE "Set DiskErrors" \i

 XE "DiskErrors" \i
State can be Off or On

When a disk-related error occurs (e.g. “file busy” or “disk full”) Spectrum normally generates a script error. The script error can be caught and handled by the script using an On Error Goto routine.

Another approach is to turn DiskErrors off, which will not generate a script error for disk-related problems. Instead, when a command that accesses the disk is used, the Failed flag is set or cleared to indicate whether the command was successful.

If the disk command fails a script can use the $ErrorCode and $ErrorMsg replacement items to determine what error occurred.

NOTE: Only disk access commands are affected; script errors (e.g., using a file number that is already in use) will still cause a script error to appear.

Set ScriptLock State XE "Set ScriptLock" \i

 XE "ScriptLock" \i
State can be Off or On

ScriptLock can be turned on to prevent a script from being interrupted by the user. When ScriptLock is on:

•
On the File menu: the Launch and Quit menu items are dimmed, and the Close menu item is dimmed when the Online Display is frontmost.

•
On the Phone menu: the Answer Back menu item is dimmed.

•
The entire Script menu is dimmed.

•
Pressing Escape will not stop the script.

If you use this command you must be very careful that you provide some way to exit your script, otherwise the user will have to restart the computer to quit Spectrum!

•
Previously, ScriptLock On would completely ignore the Escape key. Now the Escape key is processed normally if “On Escape” is active.

Compress Script "Source" "Destination" XE "Compress Script" \i
Source is the FoldernameFilename of a Spectrum Script file

Destination is a FoldernameFilename parameter

Compresses the data fork of the Source file and saves it as Destination with the “Compressed Spectrum Script” file/auxtype. A script error occurs if an error occurs. This command is intended only to compress script files, so it works only on Teach or Text files whose data forks are less than 64K.

There is no corresponding Uncompress command—the only way to use a compressed script file is by choosing Run A Script from the Script menu, by running a script that RUNs or CHAINs to the script, or by double-clicking a compressed script in the Finder.

When compressing a script you should be sure to keep the Source file intact. To help prevent mistakes, Destination must not already exist, otherwise the Failed flag is set.

Save Editor XE "Save Editor" \i
If the editor contents need to be saved, this command saves the contents. If the editor had not be saved before (i.e. it is a new file) then the command presents the standard file dialog box so the user can specify where to put the file and what to name it.

The Failed flag is set or cleared to indicate the success of the command.

External CommandName Data XE "External" \i
Shortcut: Ext
CommandName is required

Data is optional (depends on the particular external)

This broadcasts an IPC message to Spectrum XCMD~COMMANDNAME~. The external acts on the command (what the command does, and the format of any Data being passed, is entirely up to the external module).

The Failed flag is cleared or set to indicate the success or failure of the command.

Compile Script "SourcePathFileName" "TargetPathFileName"

Optimises a script by converting the commands into tokens, and removing any white space and REM statements. This can speed up the execution of some scripts by a factor of two.

Set KeyTranslation Value
Value can be “None” or “Standard”

By default, KeyTranslation is set to “None” while the online display is open. This script command overrides that setting.

Set Signature “String”
Assigns a “String” that will be inserted into any open TextEdit control with the OA-T key command.

Reboot

Similar to “Shut Down”, but reboots the system instead of just shutting down.

Specialty Commands XE "Specialty Commands" \i
Load Screen "FoldernameFilename" XE "Load Screen" \i
Loads a screen image graphic (packed $C0/0001 or unpacked $C1/0000) into the Spectrum SHR display (Spectrum’s Save Screen command creates a suitable file). Only the picture data is loaded; the SCBs and palettes are ignored, as are the first 13 scanlines of the graphic (skipping the menu bar).

This command does nothing if the Spectrum SHR display is not open and frontmost.

NOTE: Loading a screen just loads a graphic image of the screen. Like the Draw commands, screen updates will not refresh the graphic image.

DirectAction "String" Varname XE "DirectAction" \i
As in v1.0, this command passes String to the current online display for processing; and the results are returned in Varname. The options available depend on the online display being used, and in v2.0 the Spectrum SHR display added two new commands. Refer to the online help for details.

Set Update XE "Set Update" \i

 XE "Update" \i
Sets the $Update replacement item to 1. If a script is watching the $Update replacement to see if a screen update is needed, this will make the script think Spectrum has just redrawn the display in response to a system update event.

Clear Update XE "Clear Update" \i

 XE "Update" \i
Sets the $Update replacement item to 0. When a screen update occurs on a super hires display, $Update is set to 1, which is a signal to advanced scripts to redraw special screen elements (rectangles, icons, etc.). After the script updates the screen it would include a Clear Update command so the screen won’t be updated again until another update is needed.

Draw Rectangle Left Right Top Bottom Fill Frame Radius XE "Draw Rectangle" \i

 XE "Rectangle" \i
Works as it did in version 1, with the addition of the optional Radius value (1-64) to create rectangles with rounded corners.

Draw Icon X,Y "Icon" "FoldernameFilename" XE "Draw Icon" \i

 XE "Icon" \i
Works as it did in version 1, except if the specified resource is not found the Failed flag is set (no script error).

Draw DimIcon X,Y "Icon" "FoldernameFilename" XE "Draw DimIcon" \i

 XE "DimIcon" \i
This command is identical to the Draw Icon command, except that it draws the icon so it looks “dimmed.”

Draw Picture X,Y "Picture" "FoldernameFilename" XE "Draw Picture" \i

 XE "Picture" \i
Works as it did in version 1, except if the specified resource is not found the Failed flag is set (no script error).

Draw Text X,Y "String" "Family" Size Style Color XE "Draw Text" \i

 XE "Text" \i
X is a value from 0 to 639

Y is a value from 0 to 186

Family is optional; if used it is a either value or a string that identifies the font

Size is optional; if used it is a value from 2 to 255

Style is optional; if used it is a value from 0 to 31

Color is optional; if used it is a value from 0 to 15

Draws String on the screen at coordinates (X,Y). The standard font is Shaston, 8 point, plain text, in black. If Family is specified then that font is used (if available in the system). If Size is specified then that size is used, and so on.

To determine the correct Style value, add the values for each style you want to use:

	Plain = 0
	Bold = 1
	Italic = 2

	Underline = 4
	Outline = 8
	Shadow = 16

For example, to use Bold+Italic+Shadow the Style value would be 19 (1+2+16).

Define Hitzone Num Left, Right, Top, Bottom CornerRadius Color XE "Define Hitzone" \i

 XE "Hitzone" \i
Num is a value from 1 to 32

Left and Right are values from 0 to 640

Top and Bottom are values from 0 to 186

CornerRadius is optional; if used it is a number from 0-64
Color is optional; if used it is a value from 0 to 15

Defines a rectangular area that can act like a “button.” NOTE: This command works only on 640 mode super-hires screen displays.
When hitzones are turned on, clicking inside a hitzone will highlight it. If the mouse button is released while inside a hitzone the $Hit replacement item will indicate which hitzone number was clicked.

Clear Hit XE "Clear Hit" \i

 XE "Hitzone" \i
If $Hit is not zero then a hitzone was clicked. After performing the desired action your script must include a Clear Hit command to reset $Hit to 0 (otherwise your script will think that the user has clicked a hitzone again).

Flash Hitzone Num XE "Flash Hitzone" \i

 XE "Hitzone" \i
Num is a value from 1 to 32

Simulates a click on the specified hitzone, exactly as if the user had manually clicked it (i.e., $Hit is set to the given number and any associated HitAction is performed). The Failed flag is set if the specified hitzone does not exist, or if the SHR display is not open.

Delete Hitzone Num XE "Delete Hitzone" \i

 XE "Hitzone" \i
Num is a value from 1 to 32

Erases the frame around the specified hitzone, then deletes the hitzone so it is no longer active.

Delete Hitzones XE "Delete Hitzones" \i

 XE "Hitzone" \i
Deletes all the hitzones, but does not erase each individual hitzone (Display “^L” to clear the screen).

Set Hitzones State XE "Set Hitzones" \i

 XE "Hitzone" \i
State can be Off or On

Determines whether hitzones are active or not (when Off, clicking inside a hitzone does nothing).

Set HitAction Action XE "Set HitAction" \i

 XE "HitAction" \i
Action is a value from 0-4

After the mouse button goes down in a hitzone the zone is highlighted and tracked. If the mouse button is released while still inside the hitzone then Spectrum sets the $Hit replacement item to the hitzone number that was clicked. Optionally, an additional action can occur:

	Action
	Result

	0
	Do nothing else

	1
	Post an ESCape keypress (will trigger on “On Escape” handler, or will abort the script if On Escape has not been used)

	2
	Post a Return keypress (will complete a Get Key, Get Line, Input Key, Input Line, or Waitfor Keyboard command)

	3
	Post a Return into the port input stream (will complete a Get Key, Get Line, Read Char, or Read Line command)

	4
	Post “Hitzone” text into the port input stream (will complete a Waitfor String “Hitzone” command)

Store Hitzones XE "Store Hitzones" \i

 XE "Hitzone" \i
Stores the current hitzones and the associated settings.

Restore Hitzones XE "Restore Hitzones" \i

 XE "Hitzone" \i
Restores the previously-stored hitzones and settings and redraws the hitzones on the screen.

Set Hit Num XE "Set Hit" \i

 XE "Hitzone" \i
Num is a value from 0 to 65535

Sets the $Hit replacement to the specified number. This is mainly available for XCMDs to use, but could be useful if your script wants to “fake” a hit.

Set Cursor Value XE "Set Cursor" \i
Value is a value 0-6

Sets the mouse cursor to one of the following pointers:

	#
	Cursor Action

	0
	Hide (hides the current cursor)

	1
	Show (shows the current cursor)

	2
	Arrow

	3
	Watch (animates if a cursor animation extra is installed)

	4
	Spectrum Watch (won’t animate)

	5
	I-Beam

	6
	Forces the Cursor into selected format

Freeze Cursor

Unfreeze Cursor or Melt Cursor

Hides and disables the Cursor. This is the same effect as you will get when downloading files. The cursor will be restored when the script stops.

Drop DTR Value
Value is a number from 1-60

Drops the DTR line to the modem for the given number of seconds. Without the optional value, it defaults to 2 seconds.

Post Input "String"

Posts the “String” into the input buffer as if it had come from the port.

Show Window "String"
Opens a dialog style window and displays the "String" in LETextBox format. This window complements the new commands for “Set ScreenBypass” by allowing messages to be displayed while there is no active window open.

Close Window

Closes the window opened by “Show Window”.

Index

� Apple Menu
11
$ (Replacement Items),
32
$ActiveSocket,
41
$ActualFilePos#,
34
$AutoSaveBuffer,
38
$AutoSaveFile,
32

$Baud,
36
$Buffer,
33
$BufferDirty,
38
$BufferSaved,
40
$BufferSize,
40
$ChainLevel,
40
$ChatLine,
36
$Date,
33
$Date2,
39

$DateTimeStamp,
33
$DateTimeStamp2,
39

$Debug,
32
$DebugFile,
32
$DFormat,
36
$Dialed,
37
$DisplayOpen,
39
$DoHangup,
39
$DoReturn,
39
$Duplex,
36
$Echo,
36
$EditorDirty,
38
$EditorFile,
35
$EditorHandle#,
38
$EditorSize#,
35
$EOF#,
35
$EOLChar1,
42
$EOLChar2,
42
$ErrorCode,
34
$ErrorMsg,
34
$FailureCode,
38
$FileID#,
39
$FilePos#,
34
$FlushChar,
42
$FlushFrequency,
42
$FreeMem,
39
$FreeSockets,
41
$FullTime,
34
$Hit,
36
$IPAddress,
42
$LastFile,
32
$LastScriptFile,
35
$LastScriptPath,
35
$LastXferFile,
33
$LastXferPath,
33
$LongYear,
33
$PBDisplay,
37
$PBFile,
37
$PBMethod,
37
$PBNumber,
37
$PBPath,
37
$PBRedial,
37
$PortSize,
40
$Quote,
35
$ReceiveAType,
33
$ReceiveFType,
33
$ReplyQuote,
35
$ScriollSize,
40
$SEDirty#,
38
$SendLines,
36
$SerialActive,
40
$Signature,
40
$StatLine,
36
$TCPActive,
41
$TCPConnectName,
41
$TCPError,
41
$TCPInstalled,
40
$TCPIPID#,
41
$TCPMessages,
41
$TCPMode,
42
$TCPNotify,
42
$TCPOnline,
41
$Token,
36
$Trigger,
33
$Update,
37

$Version,
32

$Year2,
40

A

ActiveSocket ($ Replacement Item),
41
ActualFilePos# ($ Replacement Item),
34
Advanced Commands,
98
Append CaptureFile,
84
Append ScriptEditor,
94
Apply Format,
93
Apply LFsToCRs,
93
Apply LowASCII,
93
Apply RemoveControls,
93
Apply RemoveSpaces,
93
Apply Replace,
93
Apply Special,
93
Ask,
73
AutoReceive,
56
AutoSave,
84
AutoSaveBuffer ($ Replacement Item),
38
AutoSaveFile ($ Replacement Item),
32

B

Baud ($ Replacement Item),
36
BinaryII,
57
Branching and Loops,
30
Buffer,
76
Buffer ($ Replacement Item),
33
BufferDirty ($ Replacement Item),
38

BufferSaved ($ Replacement Item),
40
BufferSize ($ Replacement Item),
40
C

Capture Buffer,
84
Capture Buffer Control,
84
CaptureFile,
84
CarrierLoss,
76
CaseChange,
67
Catalog,
92
Catalogs (Reading),
92
Chain,
65
Chainback,
65
ChainLevel ($ Replacement Item),
40
ChatLine ($ Replacement Item),
36
Check TCPSockets,
60
Clear Clipboard,
48
Clear Desktop,
54
Clear Failed,
101
Clear Hit,
108
Clear Screen,
48
Clear ScriptEditor,
93
Clear SEDirty,
95
Clear Update,
106
Clear Variables,
68
Close Help,
49
Close OnlineDisplay,
54
Close ResFile,
100
Close ResFiles,
100
Close TCPSocket,
60
Close Window,
111
Compare,
67
CompareStrings,
67
Compile Script,
103
Compress Script,
102
Conditional Tests,
79
Connected,
58
Copy File,
88
Create ScriptEditor,
94

D

Date ($ Replacement Item),
33
Date2 ($ Replacement Item),
39
DateTimeStamp ($ Replacement Item),
33
DateTimeStamp2 ($ Replacement Item),
39
Debug,
46
Debug ($ Replacement Item),
32
DebugFile ($ Replacement Item),
32
DebugTimeInfo,
47
Define Hitzone,
107
Define Trigger,
98
Defined,
80
Delete Hitzone,
108
Delete Hitzones,
108
Delete String,
71
Delete Trigger,
99
Delete Triggers,
99
Delete Variables,
68
Desktop,
54, 80
DFormat ($ Replacement Item),
36
Dial Entry,
58
Dial Service,
58
Dialed ($ Replacement Item),
37
Dialing,
58
DimIcon,
106
DirectAction,
105
Directories (Reading),
92
DirectTransmit,
48
DiskErrors,
101
DisplayOpen ($ Replacement Item),
39
DoHangup ($ Replacement Item),
39
DoReturn ($ Replacement Item),
39
Draw DimIcon,
106
Draw Icon,
106
Draw Picture,
106
Draw Rectangle,
106
Draw Text,
107
Drop DTR,
110
Duplex ($ Replacement Item),
36

E

Echo ($ Replacement Item),
36
Edit Menu,
16
Editor,
93
EditorDirty ($ Replacement Item),
38
EditorFile ($ Replacement Item),
35
EditorHandle# ($ Replacement Item),
38
EditorSize# ($ Replacement Item),
35
Else,
81
Entry (Dial),
58
EOF# ($ Replacement Item),
35
EOLChar1 ($ Replacement Item),
42
EOLChar2 ($ Replacement Item),
42
Error Control,
96
ErrorCode ($ Replacement Item),
34
ErrorMsg ($ Replacement Item),
34
Evaluate,
71
Event,
50
Exit,
66
External,
46, 103

External Commands (XCMDs),
25

F

Failed,
101
FailureCode ($ Replacement Item),
38
False,
79
Feature Changes,
6
FileID# ($ Replacement Item),
39
File Menu,
12

File Transfer,
85
File Transfer Settings,
55
FilePos,
90
FilePos# ($ Replacement Item),
34
FileXferPath,
55
Flash Hitzone,
108
Flush,
62, 82
FlushChar ($ Replacement Item),
42
FlushFrequency ($ Replacement Item),
42
Flush TCPSendBuffer,
62
Folders (Reading),
92
For/Next Loops,
77
FreeMem ($ Replacement Item),
39
FreeSockets ($ Replacement Item),
41
Freeze Cursor,
110
FullTime ($ Replacement Item),
34

G

General Changes,
7
Get File,
88
Get FileInfo,
86, 87
Get MacFileInfo,
87
Get MultiFile,
89
Get ServiceInfo,
58
Get TCPData,
61
Get TCPEditor,
61
Get TCPHandle,
61
Get TCPServiceEntry,
64
Get TCPStatus,
62
Get TriggerInfo,
99
Getting Input,
73

H

Hit ($ Replacement Item),
36
HitAction,
108
Hitzone,
107, 108

I

Icon,
106
IdleTimer,
74
If Defined,
81
If Desktop,
81
If False,
79
If Not Contains,
79
If Not Defined,
81
If Not Desktop,
81
If Not Null,
81
If Null,
79
If True,
79
Insert String,
69

Installing,
1
IPAddress ($ Replacement Item),
42
J

JudgeName,
89
L

LastFile ($ Replacement Item),
32
LastScriptFile ($ Replacement Item),
35
LastScriptPath ($ Replacement Item),
35
LastXferFile ($ Replacement Item),
33
LastXferPath ($ Replacement Item),
33
Launch,
66
Load Buffer,
84
Load Screen,
105
Load ScriptEditor,
94
Load Settings,
53
LongYear ($ Replacement Item),
33
M

MacBinary,
55
Make CaseChange,
67
Match String,
68
Melt Cursor,
110
N

Null,
79, 80
O

Offline,
54
On CarrierLoss,
76
On Compare,
78
On CompareStrings,
76
On Trigger,
99
On Value,
77
Onhook,
58
Online Display,
54
Online Display Settings,
54
Open Help,
48
Open ResFile,
100
Open TCPSocket,
60
OS Utilities,
86
Overlay String,
69
P

Parameters,
43
Varname,
43
PBDisplay ($ Replacement Item),
37
PBFile ($ Replacement Item),
37
PBMethod ($ Replacement Item),
37
PBNumber ($ Replacement Item),
37
PBPath ($ Replacement Item),
37
PBRedial ($ Replacement Item),
37
Picture,
106
Play Event,
50
Play Sound,
50
Pop Chainback,
66
Pop All Chainback,
66
PortSize ($ Replacement Item),
40
Post Input,
110
Print ScriptEditor,
93
Program Control,
65
Q

Quit,
66
Quit2,
66
Quote,
97
Quote ($ Replacement Item),
35

R

Read Catalog,
92
Read Char,
75
Read File,
90
Read Line,
75
Reboot,
104
Receive,
85
ReceiveAType,
56
ReceiveAType ($ Replacement Item),
33
ReceiveFType,
56
ReceiveFType ($ Replacement Item),
33
ReceivePath,
56
Rectangle,
106
RelaxedXfers,
55
Rename,
86
Replacement Item,
32
ReplyQuote,
54
ReplyQuote ($ Replacement Item),
35
ResFile,
100
Restore Hitzones,
109
Restore Screen,
98
Restore Variables,
68
ResumeNext,
96
Run,
65
S

Save Editor,
103
Save ScriptEditor,
94
Save Settings,
53
Screen,
46
Screen Appearance,
82
ScreenBlank,
82
Script Control,
65
Script Development,
46
Script Editor,
93
Script Interpretation,
97
ScriptLock,
102
Script Menu,
21
ScrollData,
53
ScrollSize ($ Replacement Item),
40
Search File,
91
SEDirty,
95
SEDirty# ($ Replacement Item),
38
Send ScriptEditor,
93
Send File,
85
SendLines,
57
SendLines ($ Replacement Item),
36
SendPath,
56
Send TCPData,
62
Send TCPEditor,
62
SerialActive ($ Replacement Item),
40
Service (Dial),
58
ServiceInfo,
58
Set AutoReceive,
56
Set AutoSave,
84
Set BinaryII,
57
Set Cursor,
110
Set Debug,
46
Set DebugTimeInfo,
47
Set DiskErrors,
101
Set Failed,
101
Set FileInfo,
87
Set FilePos,
90
Set FileXferPath,
55
Set FKeyMenu,
49
Set Flush,
82
Set Hit,
109
Set HitAction,
108
Set Hitzones,
108
Set IdleTimer,
74
Set KeyTranslation,
104
Set MacBinary,
55
Set MacFileInfo,
87
Set NullStrip,
54
Set OnlineDisplay,
54
Set Quote,
97
Set ReceiveAType,
56
Set ReceiveFType,
56
Set ReceivePath,
56
Set RelaxedXfers,
55
Set Replacement,
97
Set ReplyQuote,
54
Set ScreenBlank,
82
Set ScreenBypass,
82
Set ScriptLock,
102
Set ScrollData,
53
Set SendLines,
57
Set SendPath,
 56
Set Signature,
104
Set Update,
105
Settings,
53
File Transfer,
55
Online Display,
54
Settings Menu,
22
Set TCPActiveSocket,
61
Set TCPClosedResponse,
63
Set TCPEolTranslation,
63
Set TCPFlushChar,
63
Set TCPMessages,
63
Set TCPNotify,
64
Set TCPReconnect,
65
Set XFerStatus,
83
Show File,
88
Show Menu,
17
Show ScriptEditor,
95
Show Window,
111
Shut Down,
101
Signature ($ Replacement Item),
40
Sound,
50
Specially-Treated Characters,
32
Specialty Commands,
105
StatLine ($ Replacement Item),
36
Store Hitzones,
109
Store Screen,
98
Store Variables,
67
String
45

Delete String,
71
Insert String,
69
Match String,
68
Overlay String,
69
Strip Spaces,
68
Trim Spaces,
69
Waitfor String,
73
Strip Spaces,
68
Switch TCP/IP,
59
T

TCP/IP,
26
TCP/IP Menu,
27
TCPActive ($ Replacement Item),
41
TCPConnect,
59
TCPConmnectName ($ Replacement Item),
41
TCPDisconnect,
59
TCPError ($ Replacement Item),
41
TCPIPID# ($ Replacement Item),
41
TCPInstalled ($ Replacement Item),
40
TCPMessages ($ Replacement Item),
41
TCPMode ($ Replacement Item),
42
TCPNotify ($ Replacement Item),
42
TCPOnline ($ Replacement Item),
41
Text,
107
Token ($ Replacement Item),
36
Transferring Files,
85
Transmit,
48
Trigger,
98, 99
Trigger ($ Replacement Item),
33
TriggerInfo,
99
Trim Spaces,
69
True,
79
U

UnFreeze Cursor,
110
Update,
105
Update ($ Replacement Item),
37
V

Variables
67

Clear Variables,
68
Delete Variables,
68
Restore Variables,
68
Store Variables,
67
Varname Parameter,
43
Version ($ Replacement Item),
32
W

Waitfor String,
73
Write File,
90
X

Xmit,
48

Y

Year2 ($ Replacement Item),
40

