
About Seven Hills Software

No Copy Protection

We don’t believe in copy protection—all it does is impair the honest user’s ability to use software to its fullest. We strive to
provide high quality products at reasonable prices. We hope you will support our efforts by not allowing your family or
friends to copy this software.

Postage-Paid Registration

Be sure to complete and return the postage-paid registration card so we can notify you as new versions of this program
become available. Updates are always reasonably priced.

Questions and Comments

We always welcome feedback—if you have any questions, comments, or suggestions for improving this product, please let
us know! In addition, we would like to hear your ideas for new programs.

Contacting Us

For orders and product information contact us electronically:

E-Mail: <sales@myseource.com>.

For technical questions about a specific product contact us electronically:

E-Mail: <support@myesource.com>

To contact us the “old-fashioned way,” write to:

My eSource
2310 Oxford Road
Tallahassee, FL 32304-3930

Copyrights and Trademarks

This manual and the software (computer program) described in it are copyrighted with all rights reserved. No part of the
Spectrum software or documentation may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, mechanical, photocopying, recording or otherwise, without the prior written permission of Seven Hills Software
Corporation.

SEVEN HILLS SOFTWARE CORPORATION’S LICENSOR(S) MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING THE SOFTWARE. SEVEN HILLS SOFTWARE
CORPORATION’S LICENSOR(S) DOES NOT WARRANT, GUARANTEE OR MAKE ANY REPRESENTATIONS REGARDING THE USE OR THE RESULTS OF THE
USE OF THE SOFTWARE IN TERMS OF ITS CORRECTNESS, ACCURACY, RELIABILITY, CURRENTNESS OR OTHERWISE. THE ENTIRE RISK AS TO THE
RESULTS AND PERFORMANCE OF THE SOFTWARE IS ASSUMED BY YOU. THE EXCLUSION OF IMPLIED WARRANTIES IS NOT PERMITTED BY SOME
STATES. THE ABOVE EXCLUSION MAY NOT APPLY TO YOU.

IN NO EVENT WILL SEVEN HILLS SOFTWARE CORPORATION’S LICENSOR(S), AND THEIR DIRECTORS, OFFICERS, EMPLOYEES OR AGENTS BE LIABLE TO
YOU FOR ANY CONSEQUENTIAL, INCIDENTAL OR INDIRECT DAMAGES (INCLUDING DAMAGES FOR LOSS OF BUSINESS INFORMATION, AND THE LIKE)
ARISING OUT OF THE USE OR INABILITY TO USE THE SOFTWARE EVEN IF SEVEN HILLS SOFTWARE CORPORATION’S LICENSOR HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL
OR INCIDENTAL DAMAGES, THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU. SEVEN HILLS SOFTWARE CORPORATION’S LICENSOR’S LIABILITY TO
YOU FOR ACTUAL DAMAGES FROM ANY CAUSE WHATSOEVER, AND REGARDLESS OF THE FORM OF THE ACTION (WHETHER IN CONTRACT, TORT
(INCLUDING NEGLIGENCE), PRODUCT LIABILITY OR OTHERWISE), WILL BE LIMITED TO $50.

Apple, IIGS, GS and GS/OS are trademarks of Apple Computer, Inc.

Spectrum © 1991-2000 Ewen Wannop
Spectrum is a trademark of Seven Hills Software Corporation

All rights reserved. Printed in the U.S.A.

Table Of Contents i

Table Of Contents

Spectrum Scripting

Writing A Script ..2

Running A Script ...4

Script Language Definitions

Specially-Treated Characters..6
" (String Delimiter) ..6
^ (Control Character) ..6
(Comment Character) ...7
$ (Replacement Item)..7

Parameters.. 17
VarNum... 18
Value... 18
Character.. 19
String... 20
Volumename, Foldername, and Filename ... 21
Label ... 23
Statement ... 24

Table Of Contents ii

Script Commands

Script Development.. 27

Fundamental Commands ... 29

Settings.. 34
Port Settings.. 36
Online Display Settings... 39
Character Filter Settings .. 41
File Transfer Settings.. 43

Dialing... 47

Script and Program Control.. 53

Variables.. 59

Getting Input... 65

Branching and Loops.. 69

Conditional Tests ... 77

Screen Appearance... 85

Prefix Control.. 89

Capture Buffer Control.. 90

Table Of Contents iii

Transferring Files... 93

OS Utilities... 94

Reading and Writing Files ... 99

Reading Catalogs ... 101

Script Editor.. 102

Error Control... 106

Script Interpretation.. 109

Advanced or Specialty Commands .. 111

Index

Spectrum Scripting

Scripts are extremely useful for telecommunications. By using scripts you can automate simple tasks (e.g. typing a password)
or complex ones (logging onto a system, sending and receiving mail, downloading files, then logging off). The limits of a
script are up to the imagination and skill of the script author.

This section provides basic information about writing and using scripts. Before trying to write scripts you should be familiar
with using Spectrum.

Writing A Script 2

Writing A Script
Spectrum’s scripting language is very powerful, yet relatively easy to understand because most commands (built-in
instructions that tell Spectrum to perform some action) are simple English phrases. For example, can you guess what the
command Play Sound "Welcome" does? If you guessed that it plays a sound named “Welcome” then you won’t have much
trouble learning to write scripts for Spectrum!

The best way to learn how to write a script is by doing it! Sit down with this manual and just go through it page by page,
learning what each script command does. Many examples are provided in this manual…try them, and modify them to do
something slightly different!

To actually write a script you create a text file using Spectrum’s built-in editor. In that file you simply write one or more
Spectrum commands, placing each command on a line that ends with a Return character. Or you can place several commands
on a single line by inserting a semicolon (;) between each command.

For example, this script…
Display "^LType your name then press Return: "
Get Line 2
Display "^M^J^JHello there $2!^G^M^J^J"
Stop Script

…and this script…
Display "^LType your name then press Return: "; Get Line 2; Display "^M^J^JHello there

$2!^G^M^J^J"; Stop Script

…work exactly the same.

Writing A Script 3

The only limitation to combining commands on a single line is that the line (everything up to a Return character) cannot
exceed 636 characters after all the replacements are made (replacements are explained shortly).

There are several features that don’t affect how the scripts are executed, but they do let you format your scripts to be more
readable. The following formatting features can be used:

• Blank lines

• Spaces and/or Tabs at the beginning of a line

• Different fonts, styles, and sizes

• Comments (text you can read but that will be ignored when the script is run)

 Running A Script 4

Running A Script
When Spectrum is told to run a script, it loads the specified script file into memory and begins interpreting the information in
that file. A black box appears at the upper-right corner of the menu bar while a script is running.

If an unrecognized command is encountered, Spectrum stops and displays an error message1. The error message is displayed
for approximately 30 seconds (clicking the mouse or pressing a key will dismiss the error sooner). If the error box disappears
automatically, Spectrum hangs up the line. This is a safety feature for scripts that run unattended (by hanging up, online
charges are kept to a minimum).

To stop a script press Escape, R, or choose Stop Script from the Script menu. Stopping a script closes any open script files
and returns control to the user2. NOTE: Some script commands temporarily block the use of the menu bar; if one method
does not work, try another.

1 Unless an On Error Goto command was previously encountered.

2 If an On Escape Goto command was previously encountered, pressing Escape will jump to the specified label instead of
stopping the script. However, choosing Stop Script from the Scripts menu (or pressing R) will stop the script even if an
On Escape Goto command was used.

Script Language Definitions

The Spectrum script language consists of three main parts:

• Built-in commands that tell Spectrum to do something.

• Parameters you supply that tell a command exactly what to do.

• Special characters that are treated differently than normal characters.

The following sections describe each of these components (in reverse order because you need to know about the special
characters before the parameter descriptions will make sense, and you need to know about parameters before the command
descriptions will make sense).

Throughout this manual, “host” refers to any system to which you are connected (e.g. if you are connected to GEnie, GEnie
is the “host” system). If your friend calls your computer, he is still the host because he is the system to which you are
connected (from his perspective, you are the host).

Specially-Treated Characters 6

Specially-Treated Characters
The following sections discuss the “special” characters used when writing scripts.

" (String Delimiter)

The double quote mark (") is used to indicate a “string” (a sequence of characters). For example:

An empty string (no characters): ""
A single character string: "A"

A several character string: "Greetings, Earthling!"
A string that happens to be a number: "1234"

NOTE: There is a script command that lets you redefine the string delimiter to be some other character, but normally it
should not be changed.

^ (Control Character)

The caret (^) tells Spectrum that the following letter is a control character. You use control characters to enter carriage
returns, linefeeds, and other characters that cannot be entered directly into a script command. At script runtime ̂ Letter is
replaced by the actual control character. NOTE: Capitalization of control characters does not matter (^b and ^B are both the
same character).

Specially-Treated Characters: ^ (Control Character) 7

To display the caret (^) from within a script, enter it twice (^^) or use the $^ replacement item (described in the next section).
NOTE: There is a script command that lets you redefine the control character indicator to be some other character, but
normally it should not be changed.

(Comment Character)

The number sign (#) tells Spectrum that the rest of the line is a comment. Comments are not executed when a script is run
Comments are useful to document what your script is doing so it will be easier to modify in the future. When typing a
comment you must include a space after the # sign, then type the comment.

If the number sign is at the beginning of a line, the first word after the sign is also a Label (described later). If you want to
include a comment but do not want it to be a Label then you can use the alternate comment indicator Rem or Remark.

Example:
This is a comment, and "This" is also a Label
Rem This is just a comment
Remark This is just a comment

$ (Replacement Item)

The dollar sign ($) tells Spectrum that what follows is a replacement item. A replacement item works by completely
replacing the $Item with that item’s current contents, just as if you had actually typed the contents.

For example, the $Date replacement item gets replaced by the current date, in the form of “dd mmm yy”. If today’s date is
November 19, 1993, when this script is run…

Specially-Treated Characters: $ (Replacement Item) 8

Display "Today is $Date .^M^J"

…it works exactly as if you had actually typed:
Display "Today is 19 Nov 93 .^M^J"

Of course, the advantage to using the $Date replacement item instead of actually typing the date is that when the date
changes, so will the message that is displayed.

Note that no spaces are inserted when you use a replacement item—the $Item is replaced exactly as if you had typed it from
the keyboard!

To demonstrate this point further, if these assignments have been made…
Set Variable 0 "12" # $0 is now 12

Set Variable 1 "14" # $1 is now 14

Set Variable 2 "12,14" # $2 is now 12,14

Set Variable 3 "GotoXY 12,14" # $3 is now GotoXY 12,14

…then all of these statements are exactly identical when the script is run:
GotoXY 12,14
GotoXY $0 , $1 # Same as typing GotoXY 12 , 14

GotoXY $2 # Same as typing GotoXY 12,14

$3 # Same as typing GotoXY 12,14

The following replacement items are available in Spectrum. NOTE: Capitalization of replacement items does not
matter—$RATE, $rate, $Rate, and $rAtE are all the same item.

Specially-Treated Characters: $ (Replacement Item) 9

$$
Gets replaced by a single $.

Example:
Display "The cost is $$12.34^M^J"

$^
Gets replaced by a caret (^).

Example:
Display "^LSee what $^L does?^M^J"

$#
must be replaced by a number from 0 to 9

Gets replaced by the contents of the specified variable (see the Set Variable command).

Example:
Set Variable 5 "Hello there!^M^J"
Display "$5"

$Length#
must be replaced by a number from 0 to 9

The length of the contents of variable number # .

Example:
Set Variable 6 "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
Display "There are $Length6 characters in '$6'.^M^J"

Specially-Treated Characters: $ (Replacement Item) 10

$FKey#
must be replaced by a number from 0 to 9

Gets replaced by the contents of the specified FKey (see the Set FKey command).

Example:
Set FKey 3 "a frequently-used phrase"
Display "FKey 3 is '$FKey3'. Try pressing OpenApple-3.M^J"

$Version
Gets replaced by the software’s name and version number (e.g. Spectrum 1.0).

$UserName
Gets replaced by the personalization that was entered when Spectrum was installed (the same name that is displayed in the
About dialog box).

$OnlineDisplay
Gets replaced by the current online display name, as displayed in the Online Display dialog box.

$DisplayVersion
Gets replaced by the version number of the currently-chosen online display.

$DateTimeStamp
Gets replaced by a ProDOS-compatible Filename that represents the current date and time (e.g. D17Sep94T1040).

$Date
Gets replaced by the current date (e.g. 3 Nov 93, 17 Sep 94).

Specially-Treated Characters: $ (Replacement Item) 11

$Month
Gets replaced by the current month number (01-12).

$MonthText
Gets replaced by the current month abbreviation (Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec).

$Day
Gets replaced by the current day number (01-31).

$DayText
Gets replaced by the current day abbreviation (Sun Mon Tue Wed Thu Fri Sat Sun).

$Year
Gets replaced by the current year number (00-99).

$Time
Gets replaced by the current clock time with no seconds or am/pm indication (e.g. 10:40).

$FullTime
Gets replaced by the current clock time with seconds and am/pm indication (e.g. 10:40:59 am).

$Hour
Gets replaced by the current hour (01-23).

Specially-Treated Characters: $ (Replacement Item) 12

$Minute
Gets replaced by the current minute (00-59).

$Second
Gets replaced by the current second (00-59).

$Rate
Gets replaced by the rate that was set by the Set Rate command.

$Timer
Gets replaced by the current timer value, in the form “00:01:32”.

$Cost
Gets replaced by the current cost of a call. The cost is calculated as $Rate divided by 60 times $Timer seconds, and is shown
with two decimal places (e.g. 12.34).

Example:
Set Rate 10; Set Timer On; Pause 10
Display "The current cost is $$$Cost^M^J"

Note that in this example the first $$ gets replaced by a single $, and $Cost gets replaced by the current cost. Thus something
like the following is displayed on the screen:

The current cost is $1.67

$Matched
Gets replaced by the item number that was matched in a WaitFor command.

Specially-Treated Characters: $ (Replacement Item) 13

$MatchString
Gets replaced by the string that was matched in a WaitFor command.

Example:
WaitFor String "cat" "dog"
Display "Got '$MatchString' (choice #$Matched).^M^J"

$ErrorMsg
Only meaningful in an “On Error Goto” routine

Gets replaced by the error message that would have been shown to the user if the script aborted normally.

$PTimer
Gets replaced by the current prompt timer value that was set by the Set PTimer command.

$CurrentX
Gets replaced by the current horizontal cursor position.

$CurrentY
Gets replaced by the current vertical cursor position.

$StoredX
Gets replaced by the horizontal cursor position that was stored by the Store XY command.

$StoredY
Gets replaced by the vertical cursor position that was stored by the Store XY command.

Specially-Treated Characters: $ (Replacement Item) 14

$PhoneEntries
Gets replaced by the number of phonebook entries listed in the Dial Number dialog box.

$ForValue#
must be replaced by a number from 0 to 9

The current counter value of loop number # .

Example:
For 7 11 37; Display "Value is $ForValue7.^M^J"; Next 7

$SFPrefix
Gets replaced by the current prefix 8 (usually the Foldername that was last used in one of Spectrum’s “Open” or “Save”
dialog boxes).

$Boot
Gets replaced by the Volumename of the disk you used to start the system.

$SpectrumPath
Gets replaced by the Foldername from which Spectrum was launched.

$SpectrumFile
Gets replaced by the Filename of Spectrum (it will be “Spectrum” unless you have renamed it on disk).

$ScriptPath
Gets replaced by the Foldername of the script that is currently running.

Specially-Treated Characters: $ (Replacement Item) 15

$ScriptFile
Gets replaced by the Filename of the script that is currently running.

$MenuPath
Gets replaced by the Foldername of the current menu file. This is the same folder that is searched when an Option-keypress
is used to run a script. The $MenuPath is set by loading a menu file from the desired folder (see Load MenuFile).
NOTE: $ScriptPath and $MenuPath do not necessarily indicate the same folder. $ScriptPath indicates the folder of the
currently-running script. If the user selected a script manually (by choosing Run a Script from the Script menu), or if a
script command was used to run a script, $ScriptPath could be different from $MenuPath. If you write a script that accesses
items that should be stored in the same folder as your script, always use $ScriptPath.

$MenuFile
Gets replaced by the Filename of the current menu file.

$LogonFile
Gets replaced by the Filename of the script (if any) that is attached to a phonebook entry. Valid only after a Dial Entry or
Dial Service command.

$FileXferPath
Gets replaced by the Foldername used for file transfers (set by the user in the File Transfer dialog on the Settings menu, or by
the Set FileXferPath command).

$AutoSavePath
Gets replaced by the Foldername where the capture buffer will be saved automatically (see Set AutoSave).

Specially-Treated Characters: $ (Replacement Item) 16

$LastPath
Gets replaced by the Foldername of the last file that was loaded, saved, or sent.

$FrontmostApp
Gets replaced by the FoldernameFilename of the frontmost application. If $FrontmostApp is equal to
$SpectrumPath$SpectrumFile then Spectrum is the foreground application, otherwise The Manager is active and Spectrum is
in the background.

Color Values
Colors are numbered from 0 to 15. The following replacement items are available to simplify commands that use a color
value:

$Black 0 $DarkGreen 8
$Blue 1 $Aqua 9
$Brown 2 $BrightGreen 10
$Gray1 3 $PaleGreen 11
$Red 4 $Gray2 12
$Purple 5 $Periwinkle 13
$Orange 6 $Yellow 14
$Pink 7 $White 15

Parameters 17

Parameters
When you use a command there are usually additional “parameters” you must specify so that the command knows exactly
what to do. For example, in the statement Pause 5, “Pause” is the command and “5” is a parameter that tells the command
how long to pause.

In this manual, command parameters are displayed in italics so you can see exactly what part of the command you may need
to complete. Study this partial example of a command description:

Pause Value
Value is optional; if used it can be from 0 to 65535

On the first line the required part of the command is in boldface and parameters you might supply are in italics. The second
line contains special notes about the parameter (it tells you that you don’t have to specify a value, but if you do that it must be
a number from 0 to 65535).

There are several parameters that are commonly used. Those common parameters are not redefined or noted in a command’s
description unless further explanation is required.

The common parameter types which are described in this section are:

• VarNum

• Value

• Character

Parameters 18

• String

• Volumename, Foldername, and Filename

• Label

• Statement

VarNum

Variables are used to store information in memory. Ten variables are available, represented by the numbers 0 through 9.

Wherever a VarNum parameter is specified you can use one of the following:

• A number from 0 through 9

• Any replacement item that results in a number from 0 through 9

Value

A Value is a positive integer (no negative numbers and no fractions or decimals). The exact restriction for a Value parameter
depends upon the command, so it is noted in each command’s description.

Wherever a Value parameter is specified you can use one of the following:

• A number (4, 2, 7, etc.)

• A string that represents a number (“4”, “2”, “7”, etc.)

• Any replacement item that results in a Value

Parameters: Character 19

Character

A Character is any single character available on the Apple IIGS.

Wherever a Character parameter is specified you can use one of the following:

• A single character, with or without quote delimitation marks (A, g, 7, “R”, “k”, “3”, “^M”, “^J”)

• A value—without the quote delimitation marks—corresponding to the desired character’s ASCII code. The value can
be specified as a decimal number (10 through 255 only; 0 through 9 would be considered a single character) or as a
hexadecimal value ($00 through $FF). NOTE: To specify a hexadecimal value you must use $$xx (as in “Set Quote
$$22”).

• Any replacement item that results in a Character

Examples:
Set Quote \ or Set Quote "\"
Set Quote 92 or Set Quote "92"
Set Quote $$5C or Set Quote "$$5C"

Note the use of two dollar signs to indicate a hexadecimal number. Remember, this is required because a single $ indicates a
“replacement item”…when Spectrum first expands the Set Quote $$5C command, the $$ gets replaced by the single $, so
Spectrum actually sees $5C.

Parameters: String 20

String

A String is composed of 0 to 128 Characters.

When used in a script, strings should be enclosed in delimitation marks (they are required if the string contains spaces;
otherwise the marks are optional). NOTE: The “delimitation mark” is usually the double quote (") mark. Although the string
delimitation mark can be changed by a script, the examples presented in this manual all use the standard double quote mark.

Wherever a String parameter is needed you can use one of the following:

• A single character, with or without quote delimitation marks (A, g, 7, “R”, “k”, “3”, “^M”, “^J”)

• A word, with or without quote delimitation marks (dog, CAT, “house”, “Bread”)

• Two or more words within quote delimitation marks (“wild dog”, “Pretty blue cat^M^J”)

• An empty string (""), which has zero characters

• Any replacement item that results in a String

Parameters: Volumename, Foldername, and Filename 21

Volumename, Foldername, and Filename

Volumename: The name of a disk (it does not include any folder or file names). For example:
:Hard:
:Macintosh Disk:

Foldername: Either just the name of a disk or the name of a disk plus the names of one or more folders (or directories) on
that disk. For example:

:Hard:
:Hard:Spectrum:Spectrum.Script:
:Macintosh Disk:Files to send/receive:

Filename: The name of a file (it does not include a Volumename or Foldername). For example:
Capture.File
Today’s Email

Parameters: Volumename, Foldername, and Filename 22

Remember these important notes about pathnames:

• Always include pathnames in the string delimiter mark (normally the double-quote mark). Although the marks are
optional if a pathname has no spaces in it, spaces are entirely possible when using AppleShare or HFS disks. If you
don’t include the string delimiter marks, a script that works on a ProDOS disk could fail if it is used on an HFS disk.

• Always use colons (:) at the beginning of a Volumename, and to separate the names of each folder in a Foldername.
Although Spectrum allows the old ProDOS-style “/” indicator, it is better to use the GS/OS-style “:” indicator.

• Wherever a Volumename, Foldername, or Filename is needed you can use any replacement item that results in the
proper parameter.

• Wherever a Volumename or Foldername is needed you can use a GS/OS prefix number if it is set correctly. See the
Set GSPrefix command for more information.

• Wherever a FoldernameFilename parameter is indicated you can omit the Foldername if prefix 8 is set to the proper
folder. NOTE: It is safer to always include the desired Foldername because prefix 8 can be changed by the user at
almost any time.

Parameters: Label 23

Label

Wherever a Label is needed you must specify a label that is defined somewhere in your script.

To define a label in your script, type the comment character (#) at the beginning of a line, press the Spacebar, then type a
word that will be the label. If you also want to add a comment, press the Spacebar then type the comment.

Look at the following examples in the left column to see if you can determine which items are valid labels. The right column
shows the correct answer and reason for each item:

What is a label? What (the first word after the # at the
beginning of the line)

Say_Hello Say_Hello (the first word after the # at the
beginning of the line)

Display "Bye!" # The End (no label; # is not at the beginning of the
line)

AskQuestion -- Asks the
user a question

AskQuestion (the first word after the # at
the beginning of the line)

AskQuestion--Asks the user
a question

AskQuestion--Asks (the first word after the
at the beginning of the line)

WhatLabel?ThisOne! WhatLabel?ThisOne! (the first word after
the # at the beginning of the line)

Script Commands 24

Statement

Wherever a Statement is needed you can insert any valid Spectrum command, including multiple commands separated by
semicolons. You can even use any replacement item that results in a Statement.

Script Commands 25

Script Commands

This section describes every Spectrum script command. The function of each command is explained, but in-depth
descriptions from the Spectrum Reference manual are not repeated here. For example, the Set Baud command states that it
controls the port setting’s baud rate, but it does not explain what baud rate is or how it affects telecommunications. For that
information, refer to the Spectrum Reference manual.

Each command is described in the following format:

Pause Value
Value is optional; if used it can be from 0 to 65535

Pauses script execution for Value seconds. A value of 0 pauses
forever; if no value is given there is a one second pause.

Example:
Display "Hold your breath..."
Pause 5; Display "^Gbreathe normally now!^M^J"

The first line displays the required parts of the command in boldface and parameters that you might supply in italics. In the
sample above, Pause is the command and Value is the only parameter.

Script Commands 26

If a parameter needs explanation or clarification, it appears below the command name. In the sample above, it is clarified that
Value is optional, but if specified it must be a number from 0 to 65535.

Following these items is a description of the command as well as any other notes of interest. From the sample above we now
know that Pause will cause a delay of Value seconds, and we know what happens if no value is specified, or if a value of 0 is
used.

An example is often provided to clarify and spark ideas (they are not necessarily useful, as the example above illustrates).

Script Development 27

Script Development

Set Debug State
State can be Screen, Scrollback, or Off

Helps you trace exactly what is happening when a script is run so you can detect errors or omissions. Each script statement is
displayed or recorded after all replacements have been made, just prior to executing the expanded statement.

Screen: Statements are displayed on the screen. In some online displays the commands are shown in inverse text to help
separate them from the rest of the screen. This option is useful for short scripts that display very little on the screen. It can be
used for longer scripts, but the displayed statements may go by too quickly to effectively trace what is happening.

Scrollback: Statements are placed into the scrollback buffer. This option is usually more useful than Screen because it
provides a written record of all the statements that were executed, as well as showing when they were executed.

Off: When debugging is off, scripts execute with no debug information being displayed or recorded.

Example:
Clear Scrollback; Set Debug Scrollback
Display "How^M^Jdoes^M^Jthis^M^Jlook?^M^J"
Set Debug Off

Script Development 28

Clear Scrollback
Clears the scrollback buffer, which is sometimes useful during debugging (especially when sending debug commands to the
scrollback buffer). NOTE: This command should never appear in a completed script!

Set ShowControls State
State can be Off or On

When on, control characters are displayed as ^letter, which is sometimes useful for debugging scripts. For example, if you’re
waiting for “Hello” but the host is transmitting “Hel^Tlo” you may not know why the script isn’t working; by turning on
ShowControls you will be able to see the problem.

For this command to be most useful, create and select character filter tables that do no key translations. NOTE: Some online
displays do not support this command. This command should never appear in a completed script!

Fundamental Commands 29

Fundamental Commands

Display "String"
Displays String on the screen. If you also want to send the string out to the port, use the Transmit command.

No characters are added automatically by the Display command. If you want to display a word followed by a carriage return
you must include the carriage return in the Display command (see the example below).

Because some online displays do not automatically add a linefeed (^J) when a carriage return (^M) appears, you should
always display the “^M^J” combination to ensure the cursor is at the first position of the next line. Displays that do
automatically linefeed will ignore the first ^J after a ^M.

Example:
Display "^LThis is "
Display "a test.^M^J"
Display "^GSee how these^M^Jlines look?^M^J"

The following control characters behave in a standard way when used in a Display command:

Fundamental Commands 30

Key Result
^E Show the cursor
^F Hide the cursor
^G Play the system beep sound
^H Move the cursor one character to the left
^J Move the cursor down one line
^K Clear the screen from the cursor on down, without changing

the cursor position
^L Clear the display and move the cursor to the top-left of the

display
^M Move the cursor all the way to the left of the current line (and

sometimes down one line too)
^Y Move the cursor to the top-left of the display without clearing

the display
^] Clear from the cursor to the end of the line
^^ GotoXY (the ASCII value of the next two characters are

interpreted as X+32 and Y+32)

NOTE: To insure that you are at the beginning of the next line, always display the combination “^M^J”.

NOTE: You cannot directly display “^^” followed by two letters, but you can do it with the following script:
Set Token \ # change the control character token to be \
Display "\^!*" # same as GotoXY 1,10
Set Token ^ # change token back to ^

Fundamental Commands 31

The following additional control characters are not supported in all online displays, but if supported they behave as
described:

Key Result
^I Move the cursor right, to the next “tab stop” (usually at

positions 0, 8, 16, 24, and so on)
^N Normal text (turns off Inverse, and sometimes MouseText too)
^O Inverse text
^V Scroll the screen down one line without changing the cursor

position
^W Scroll the screen up one line without changing the cursor

position
^X Turn off MouseText (and sometimes Inverse too)
^[Turn on MouseText (uppercase letters A-Z are displayed as

“MouseText” characters)
^\ Move the cursor right one character
^_ Move the cursor up one line
^Z Clear the entire line that the cursor is on

NOTE: Displays that support MouseText have different requirements. To ensure MouseText is on, always display the
combination “^O^[“; to ensure MouseText is off, always display the combination “^X^N”.

DisplayRecord "String"
Displays String on the screen and records it into the capture buffer (even if the screen and buffer have been turned off). If you
also want to send the string out to the port, use the Transmit command.

Fundamental Commands 32

Example:
DisplayRecord "^M^J[Begin online session on $Date at $FullTime.]^M^J"

In the example, note that the ^M^J combination is there for the benefit of the “Display” part of the command…recording to
the capture buffer does not need a linefeed.

Record "String"
Records String directly into the capture buffer (even if the buffer has been turned off). If you also want to send the string out
to the port, use the Transmit command.

Example:
Record "^M[Begin online session on $Date at $FullTime.]^M"

In the example, note that only ^M is used…the capture buffer does not need a linefeed.

Transmit "String"
Shortcut: Xmit "String"

Sends String directly out to the port. If the port is set for half duplex the string is also displayed on the screen; with full
duplex the string is displayed only if the host echoes it.

No characters are added automatically by the Transmit command. If you want to transmit a word followed by a carriage
return you must include the carriage return in the Transmit command (see the example).

Example:
Transmit "MyPassword^M"

Break
Sends a “break” signal to the port.

Fundamental Commands 33

Load MenuFile "FoldernameFilename"
Loads the specified file as if the user selected it by choosing Load Menu File from the Script menu.

Clear MenuFile
Removes any script names from the bottom of the Scripts menu, and resets the menu path to the Spectrum.Script folder.

Set FKey Value "String"
Value can be from 0 to 9

Sets an “FKey” to the specified String. From then on pressing # (where # is a number from 0 to 9) will type the string just
as if you typed it from the keyboard (if a display window is open and in front; it does not work in the Editor, in NDAs, etc.).

The FKeys are available even after the script has stopped running, which makes them very useful for quickly typing common
phrases.

Example:
Set FKey 1 "For more Spectrum information contact:^M Seven Hills Software^M 2310 Oxford

Road^M Tallahassee, FL 32304^M" # From now until Spectrum is quit (or another Set FKey 1 is
encountered) pressing OpenApple-1 will type the complete address when the online display is
open.

Settings 34

Settings

Save Settings
Saves Spectrum’s current settings to disk. Settings are also saved when Spectrum is quit (unless the user has checked the
“Don’t save settings” option in the Status dialog box).

Load Settings
Loads Spectrum’s settings from disk.

Store Settings
Remembers Spectrum’s settings in memory.

Every script command that controls a checkbox or popup menu in a Spectrum dialog box is affecting choices the user has
made. Whenever possible you should not permanently alter the user’s settings of those items. This example shows one way to
change settings without permanently affecting the user’s choices:

Store Settings # hold current settings in memory
Set AutoReceive OFF # turn autoreceive off during logon
Set Duplex FULL; Set Echo OFF # don't show logon information
...logon commands here...
Restore Settings # restore the AutoReceive, Duplex, and Echo settings to whatever they were

originally

Settings 35

Restore Settings
Restores from memory the previously-stored program settings.

Set SmartPaste State

Controls whether Spectrum’s built-in editor will use “smart” cutting and pasting. If you change this option, the editor
window must be closed (W) then re-opened (E) before the change takes effect.

With SmartPaste turned on, cutting and pasting will insert and delete spaces automatically in an effort maintain the proper
spacing between words. However, this option is normally turned off because it can be annoying when editing scripts.

Settings: Port Settings 36

Port Settings

NOTE: The commands described in this section control settings related to the communications port. Most commands
affect options that the user can set in the Port Settings dialog box.

Set Baud Rate
Rate can be Default, 50, 75, 110, 135, 150, 300, 600, 1200, 1800, 2400, 3600, 4800, 7200, 9600, 19200, 38400, or 57600

Sets the “Baud Rate” option to the specified rate.

Set DFormat Format
Format can be 7E2, 7O2, 7N2, 7E1, 7O1, 7N1, 8E2, 8O2, 8N2, 8E1, 8O1, or 8N1

Sets the “Data Format” option to the specified data bits (7 or 8), parity (N one, E ven, or O dd), and stop bits (1 or 2).

Set Duplex DuplexKind
DuplexKind can be Half or Full

Controls the “Half Duplex” checkbox. With half duplex, outgoing data is displayed on the screen as it is transmitted; with full
duplex outgoing data is not displayed on the screen. Setting full duplex and setting the screen off

Set Echo State
State can be Off or On

Controls the “Echo” checkbox. If echo is on, incoming characters are echoed back out to the port. NOTE: If Echo is on and
the host echoes characters back to you, you may find yourself in a loop with the same characters constantly being echoed
between the two systems. Turn echo off to stop the loop.

Settings: Port Settings 37

Also, commands which normally are displayed only on the screen will be sent out to the port (e.g. Get Line, Show Catalog,
Show File, etc.). NOTE: When echoing information out to the port, characters are not passed through the keyboard filter (as
they would be if they were sent using the Transmit command).

Set SendLFs State
State can be Off or On

Controls the “Send LFs” checkbox.

Set Handshake State
State can be Off or On

Controls the “H’ware Handshake” checkbox.

Set XonXoff State
State can be Off or On

Controls the “Xon/Xoff Flow” checkbox.

Set CharDelay Value
Value can be from 0 to 9

Controls the “Character Delay” value. Value is the delay in 1/60ths of a second (0 is no delay; 9 is a .15 second delay).

The delay occurs after each character is sent out to the port and is used at all times except for non-text file transfer protocols.

Set LineDelay Value
Value can be from 0 to 9

Controls the “Line Delay” value. Value is the delay in 16/60ths of a second (0 is no delay; 9 is a 2.4 second delay).

The delay occurs after a Return character is sent out to the port and is used at all times except for non-text file transfer
protocols.

Settings: Port Settings 38

Set DCD State
State can be Off or On

Controls the “DCD Handshake” checkbox.

Set Port PortKind SlotNumber
PortKind can be IIGS or Slot
SlotNumber can be a number from 1 to 2 if PortKind is IIGS; from 1 to 7 if PortKind is Slot

Controls the port connection options:

IIGS: Indicates the connection should be through the serial port on the back of the IIGS computer. To specify the Printer Port
use 1 for SlotNumber; to specify the Modem Port use 2.

Slot: Indicates the connection should be through the card that is plugged into the specified slot.

Examples:
Set Port Slot 2 # a Super Serial Card in slot 2
Set Port Slot 4 # an AE DataLink in slot 4
Set Port IIGS 2 # the IIGS Modem Port

Settings: Online Display Settings 39

Online Display Settings

NOTE: The commands described in this section control settings related to the online display. Most commands affect
options that the user can set in the Online Display Settings dialog box.

Set OnlineDisplay "Display"
Display can be the name of any online display as it appears in the Online Display Settings dialog box

Selects and opens the specified online display. The Spectrum SHR Fast, Spectrum SHR Normal, and Spectrum Text displays
will always be available, but others can be added or removed by the user at any time. You can test the Failed flag to see if the
display was opened or not.

Example:
Set OnlineDisplay "ANSI"
If Failed Then Display "^LThis script requires the ANSI display, which could not be

opened.^M^J^J"; Stop Script

Close OnlineDisplay
Shortcut: Offline

Closes the current online display and stops script execution as if the Stop Script command was encountered. Close
OnlineDisplay is useful for ending a script that uses a custom display—the command will close the display and return to the
640 mode desktop with Spectrum’s menu bar.

TIP: Use the Set OnlineDisplay command to select a different online display without causing the script to stop.

Settings: Online Display Settings 40

Set DeleteBack State
State can be Off or On

Controls the “Delete key = Backspace” checkbox. When on, pressing the delete key sends a backspace (^H, ASCII $08).
When off, pressing the delete key sends a true delete character (ASCII $7F).

Set LowASCII State
State can be Off or On

Controls the “Convert To Low ASCII” checkbox.

Set ScriptKeys State
State can be Off or On

Controls the “Recognize Script Keys” checkbox.

Set RemoveLFs State
State can be Off or On

When on, linefeed characters (^J, ASCII $0A) are not stored in the capture buffer or seen by scripts. This option is usually
on.

Set Sound State
State can be Off or On

Controls the “Sounds” checkbox.

Settings: Character Filter Settings 41

Character Filter Settings

NOTE: The commands described in this section control settings related to the character filter. Most commands affect
options that the user can set in the Character Filter Settings dialog box.

Set DisplayFilter Value
Value can be from 0 to 16

Sets the Display Character Filter to the specified table number. Table 0 is “Default” (which uses the translation setting
specified in the General CDEV). Other table numbers correspond to tables that have been added using the Character Filter
Editor.

Set KeyFilter Value
Value can be from 0 to 16

Sets the Keyboard Character Filter to the specified table number. Table 0 is “Default” (which uses the translation setting
specified in the General CDEV). Other table numbers correspond to tables that have been added using the Character Filter
Editor.

Settings: Character Filter Settings 42

Set Country Value
Value can be from 0 to 7

Sets the IIGS Control Panel’s Display Language and Keyboard Layout to the specified Value:
Set Country 0 # U.S.A. # @ [\] ` { | } ~
Set Country 1 # U.K. £ @ [\] ` { | } ~
Set Country 2 # French £ à ˙ ç § ` é ù è ¨
Set Country 3 # Danish # @ Æ Ø Â ` æ ø å ~
Set Country 4 # Spanish £ § ¡ Ñ ¿ ` ˙ ñ ç ~
Set Country 5 # Italian £ § ˙ ç é ù à ò è ì
Set Country 6 # German # § Ä Ö Ü ` ä ö ü ß
Set Country 7 # Swedish # @ Ä Ö Å ` ä ö å ~

This is useful for foreign services that use common character codes to display foreign characters. The Control Panel’s
Display Language and Keyboard Layout affect only the standard 40/80 column text displays…they do not affect what you
see on the Super Hires screen or on a printout.

If you frequently call a foreign service it would be better to create a Character Filter table that translated one character into
another and use a Super High Res online display. For example, a filter could translate:

$7B to $8E so an incoming { character would be changed to é, and

$8E to $7B so an outgoing é character would be changed to {

To view standard “option” characters on the Super High Res screen, the “Convert to low ASCII” online display option must
be off. However, characters intentionally converted to high ASCII characters using a filter table will display correctly even if
the “Convert to low ASCII” option is off.

Settings: File Transfer Settings 43

File Transfer Settings

NOTE: The commands described in this section control settings related to file transfers. Most commands affect options
that the user can set in the File Transfer Settings dialog box.

Set FileXferPath "FoldernameFilename"
Filename is optional

Sets the default folder and filename for file transfers. “Auto Receive” transfers will be received to or sent from this folder.
NOTE: If your script is receiving a file and does not care where it goes, set the prefix to $FileXferPath.

Set PadCR State
State can be Off or On

Controls the “Pad Empty Lines” checkbox. Some hosts use a blank line to indicate the end of a document. When this option
is on, blank lines in the file being sent are padded with a space.

After a file has been sent with this option on, you may need to Transmit “^M” to finish the transfer because CRs within the
file have been padded.

Set Prompt Character

Establishes the prompt character used when sending text files, and turns on prompting. If Character is ^@ or ^M then
prompting is turned off.

Settings: File Transfer Settings 44

Set PTimer Value
Value can be from 0 to 256

The value indicates how many seconds Spectrum will wait for the prompt character during a “prompted” text file upload. If
the prompt is not received within Value seconds after sending a line of text, the upload continues.

Set ULTextShow State
State can be Off or On

Controls the “Display text and save to buffer” checkbox in the Send Text File dialog box. If this option is on when a text file
is uploaded, the text is displayed on the screen and captured just as if it was being typed at the keyboard. If this option is off,
the file transfer dialog box appears while the file is being sent.

Set AutoResume State
State can be Off or On

Controls the “Resume Transfers” checkbox. When on, interrupted/aborted CIS B+ and Zmodem transfers will be resumed if
possible.

Set AutoReceive State
State can be Off or On

Controls the “Auto Receive” checkbox. When on, Spectrum watches incoming data to see if the host wants to send a file via
CIS B+ or Zmodem.

Because CIS B+ transfers are started by a single character (^E), it is fairly easy to trigger a false CIS B+ transfer. To prevent
false triggers you could write a script that turns auto receive off and on when necessary.

Settings: File Transfer Settings 45

Set BinaryII State
State can be Downloads, Uploads, Off, or On

Controls the “Binary II Down” and “Binary II Up” checkboxes.

Downloads: If a downloaded file has a Binary II wrapper, the wrapper will be removed from the file as it is downloaded.
This option also turns off the “Resume Transfers” checkbox.

Uploads: If a file doesn’t already have a Binary II wrapper, one will be added as the file is uploaded.

Off: Turns off both checkboxes.

On: Turns on both checkboxes, and turns off the “Resume Transfers” checkbox.

Set SendAhead State

Controls the “Packet Send Ahead” checkbox. If this option is on then CIS B+ and Zmodem transfers will not wait for an
acknowledgment of receipt of the previous packet before sending another packet. This can decrease file transfer time, but
should be used only with a good connection.

Set ProDOSX State
State can be Off or On

Controls the “ProDOS Xmodem” checkbox. When on, extra information is transmitted about a ProDOS file (the file’s length,
file type, creation/modification date, etc.). Useful mainly when sending a file from one Apple to another or with systems that
support this feature.

Settings: File Transfer Settings 46

Set RelaxedXfers State
State can be Off or On

Triples the normal wait times for all protocol transfers during this session of using Spectrum (the normal wait times are re-
established the next time Spectrum is started).

This command is useful when connected to a host that is slow to respond during file transfers. If you find transfers are getting
aborted due to timeout errors, this command can help (it cannot help if the problem is line noise).

Set Turbo State
State can be Off or On

Sets “Turbo” mode for Ymodem file transfers. When off, Receive Ymodem uses regular Ymodem protocol; when on it uses
Ymodem-g. Ymodem-g avoids the typical delays between transmittal of each block, but must be used only with a good
connection because if a single bad packet is encountered the whole transfer is cancelled and must be restarted from scratch.

Set ZErrors Value
Value can be from 0 to 65536

Sets the number of errors that will be allowed during a Zmodem transfer. The transfer will be aborted if more than Value
number of errors occur.

Dialing 47

Dialing
NOTE: If you’re writing a script that will be attached to a phonebook entry in the Dial Number dialog, or that uses one of the
Dial commands, be aware that the script should not wait for things like “CONNECT” or “BUSY”—Spectrum’s dialing
routines are complete (if they do not fail then you are connected).

Set ConnectWait Value
Value can be from 1 to 999 seconds

Specifies how long to wait for a connection before cancelling the dial sequence.

Example:
Set ConnectWait 60

Get PhoneEntry Value VarNum
Value can be a number from 1 to $PhoneEntries

Extracts the name of the specified phonebook entry and stores it in the specified variable.

Dial String "String"
Prepares the given number for dialing by adding “ATDT” or “ATDP” if needed, then dials the number. Because scripts have
greater control over redialing, this command does not redial automatically.

You can check the Failed flag to determine whether or not a connection was made. NOTE: If the user pressed the ESC key to
cancel dialing, the Keyboard value will be ^[(ESC).

Dialing 48

Example:
Dial String "555-1234"
If NOT Failed Then Display "[CONNECTED AT $Time ON $Date]^M^J"; Stop Script
If Keyboard "^[" Then Display "Changed your mind, eh?^M^J"

Dial Service "PhonebookEntry"
PhonebookEntry can be the name of any phonebook entry that appears in the Dial Number dialog box

Extracts the specified entry, sets the port settings, then dials the entry’s phone number. Because scripts have greater control
over redialing, this command does not redial automatically.

You can check the Failed flag to determine whether or not a connection was made. NOTE: If the user pressed the ESC key to
cancel dialing, the Keyboard value will be ^[(ESC).

If the phonebook entry has a script attached to it, that script is not automatically run. Instead, the $LogonFile replacement
item is set to the name of the attached script. This way your script can decide whether to use an entry just for connecting to a
service, or it can connect and run the script attached to the phonebook entry (see the example below).

Example:
Dial Service "GEnie"; If Failed Then Stop Script
Set SFPrefix "$MenuPath" # This is the folder that the last menu file was loaded from, which is

where the logon script should be located
If Exists "$LogonFile" Then Run "$LogonFile" # If the logon file doesn't exist then no error

appears

Dial Entry Value
Value can be a number from 1 to $PhoneEntries

Dials phonebook entry number Value exactly like the Dial Service command. The Dial Entry command is useful for
automatically dialing one entry after another until one connects. For dialing a specific service the Dial Service command
should be used because phonebook entries can change position whenever an entry is added or deleted.

Dialing 49

Example:
If Equal "$PhoneEntries" "0" Then Stop Script # because there are no entries to dial
For 5 1 $PhoneEntries; Get PhoneEntry $ForValue5 3
Display "Trying entry number $ForValue5 ($3)...^M^J"; Dial Entry $ForValue5; If Not Failed Then

Clear For 5; Display "^LConnected to $3!^M^J"; Stop Script
Next 5; Display "Couldn't connect.^M^J"; Stop Script

Hangup
Hangs up the modem without asking for confirmation.

Set Password Value "String"
Value can be from 0 to 9

Encrypts String and saves it with Spectrum. The stored password may be transmitted using the Send Password command.

The following table shows the recommended use for the password values:
0 The response given at GEnie’s “U#=” prompt
1 The response given at CompuServe’s “Password” prompt

By using stored passwords and the Send Password command, generic scripts can be written and posted online without having
to remove your private password information.

Send Password Value
Value can be from 0 to 9

Decrypts the stored password and sends it out to the port with no screen echo (unless the host echoes it).

Dialing 50

Set Rate Value
Value can be from 0 to 65535

Sets the value used to calculate the $Cost replacement item. The value should be the cents (or pence, kopeks, etc.) per
minute. For example, if a service costs $6.00 per hour, the cost per minute is 10 cents (6.00*100/60).

Set Timer State
State can be Off or On

Turns the timer on and off. The current timer can be displayed using the $Timer replacement item. A charge based on the
timer can be calculated by first setting the rate (Set Rate) then displaying the $Cost replacement item.

Clear Timer
Clears the timer back to 00:00:00; it does not turn the timer on or off.

Dialing 51

Play Sound "Name"
Plays the specified sound at the volume specified in the Sounds CDEV. NOTE: In order to play sounds, the Sounds CDEV
must be installed and active, and the “Sounds” checkbox must be on in the Online Display Settings dialog box.

Name is case-sensitive (“welcome” and “Welcome” are not the same sound). The Failed flag is set if the specified sound was
not found (Spectrum will play sounds in the Spectrum.Sounds file, or in any of the sound files found in the System:Sounds
folder). NOTE: System 6.0.0 contains a bug that sometimes prevents the correct sound from being played (e.g. playing “You
Have Mail (HAL)” will actually play “You Have Mail”). System 6.0.1 works correctly.

To avoid one sound cutting another sound short, Spectrum waits until no sound is playing before it asks the Sounds CDEV to
play the requested sound. This means that sounds can be “combined” by playing one right after another.

Two sound files come with Spectrum: SP.Snds.Main and SP.Snds.Aux.

The sounds in the SP.Snds.Main file are played automatically by Spectrum at the appropriate time:

Spectrum Welcome File-Launch File-Quit
Phone-Connected Phone-No Connection
Phone-Hangup
Send/Receive-Good Send/Receive-Bad
Chatline Warning SystemBeep
Saving Screen Saving Screen Failed
Key-Return Key-Spacebar Key-Any

Dialing 52

The sounds in the SP.Snds.Aux file are not played by Spectrum, but scripts can play them when appropriate:

Welcome Goodbye
You Have Mail You Have Mail (HAL)
Reading Mail Sending Mail
Receiving Files Sending Files
Via Text Via Xmodem
Via Ymodem Via Zmodem Via CIS B+
Entering Forum Entering Roundtable
Reading
Messages

Posting Replies

Loading Saving
Capture Buffer File
Cleared On Off

Example:
NOTE: Although something like this is possible, it can get annoying if overused...
Get File 2 0; If Failed Then Stop Script
Play Sound "Loading"; Play Sound "File"; Load ScriptEditor "$0"
Apply LowASCII; Apply RemoveControls; Apply LFsToCRs; Apply Format 3
Play Sound "Saving"; Play Sound "File"; Save ScriptEditor "$0"; Clear ScriptEditor
Play Sound "Sending A File"; Play Sound "Via Text"; Send "$0" Text

Script and Program Control 53

Script and Program Control

Stop Script
Stops running the current script.

Example:
Display "Thanks for using this script!^M^J"
Stop Script
Display "You won't see this.^M^J"

Pause Value
Value is optional; if used it can be from 0 to 65535

Pauses script execution for Value seconds. A value of 0 pauses forever; if no value is given there is a one second pause.

Example:
Display "Hold your breath..."
Pause 5; Display "^Gbreathe normally now!^M^J"

WaitFor Time "Time"
Waits until the specified time then continues executing the script. The time must be specified in 24-hour format (e.g. “19:40”,
“12:34”).

Example:
WaitFor Time "19:40"; Display "It is now 7:40pm!^M^J"

Script and Program Control 54

Run "FoldernameFilename"
Runs the specified script, just as if the user chose Run a Script from the Script menu, then selected the FoldernameFilename
script. Whenever any script is run, the following items are set to a known state:

Set Quote "
Set Token ^
Set CaseSensitive OFF
Set Timeout 0
On Escape Goto "" # Spectrum handles an Escape
On Error Goto "" # Spectrum handles errors
Set Turbo OFF
Set ScreenBlank OFF
Set Screen ON
Set Debug OFF
Set Rate 0
Set Flush ON
Set ULCapture OFF
- ALSO:
- All ten variables ($0-$9) are cleared to ""
- The "If Keyboard" value is cleared
- The Failed flag is cleared to indicate "not failed"
- $Matched is cleared to 0

Script and Program Control 55

- $MatchString is cleared to ""
- All files opened by the previous script are closed (including any ScriptEditor file)

Example:
Display "Set up <C>ompuServe or <G>Enie? "; WaitFor Keyboard
If Keyboard C Then Run "$MenuPathCIS.Setup"
If Keyboard G Then Run "$MenuPathGEnie.Setup"
Display "No system with that letter.^M^J"; Stop Script

Chain "FoldernameFilename"
Passes control (or “Chains”) to the specified script, preserving all the settings that are normally reset when a script is Run
(see above).

Example:

At the beginning of a script named “Chain.1”:
Display "Do you want to <D>elete or <S>how a file? "
KeyLoop1
WaitFor Keyboard
If Keyboard D Then Set Var 9 "Delete"; Chain "Chain.2"
If Keyboard S Then Set Var 9 "Show"; Chain "Chain.2"
Display "^G"; Goto KeyLoop1

Script and Program Control 56

At the beginning of the script named “Chain.2”:
Display "^M^J^JNow in the 'Chain.2' script.^M^J^J"
If Null 9 Goto NotChained # if variable number 9 is empty then this script was RUN, otherwise the

script was CHAINed to and variable number 9 has the name of a label in this file
Goto $9

NotChained
Display "This script was RUN (not CHAINed to).^M^J"; Stop Script

Delete
Display "This script was CHAINed to, and you wanted to DELETE a file.^M^J"; Stop Script

Show
Display "This script was CHAINed to, and you wanted to SHOW a file.^M^J"; Stop Script

Launch "FoldernameFilename"
Spectrum hangs up the modem (see “Hangup”) then quits to the specified application. Quitting that application will restart
Spectrum. NOTE: If The Manager is active Spectrum will not be quit; it will just attempt to launch (or activate) the specified
application.

The user is not asked if he wants to save the capture buffer, but a Save Buffer command will be issued automatically if the
AutoSaveBuffer option is on.

Example:
Display "Launch <G>raphicWriter III? "
WaitFor Keyboard
If Keyboard Y Then Launch ":Hard:GWIII:GraphicWriter"

Script and Program Control 57

Exit "FoldernameFilename"
FoldernameFilename is optional; if given it must reference a IIGS application

Spectrum attempts to leave the communication port active (if you are online you should not be disconnected), then…

If FoldernameFilename is not given then Spectrum quits to the application that launched it. Quitting that application will
not restart Spectrum.

If FoldernameFilename is given then Spectrum quits to that application. Quitting that application will restart Spectrum.
NOTE: If The Manager is active Spectrum will not be quit; it will just attempt to launch (or activate) the specified
application.

In either case the user is not asked if he wants to save the capture buffer, but a Save Buffer command will be issued
automatically if the AutoSaveBuffer option is on.

Example:
Display "^GWARNING: Exiting does not hang up the line; be sure you are not connected to an

expensive service!^M^J"
Display "Exit to <G>raphicWriter III or <F>ont Factory GS? "
WaitFor Keyboard
If Keyboard G Then Exit ":Hard:GWIII:GraphicWriter"
If Keyboard F Then Exit ":Hard:FFGS:Font.Factory.GS"

Script and Program Control 58

Quit "FoldernameFilename"
FoldernameFilename is optional; if given it must reference a IIGS application

Spectrum hangs up the modem (see “Hangup”) then…

If FoldernameFilename is not given then Spectrum quits to the application that launched it. Quitting that application will
not restart Spectrum.

If FoldernameFilename is given then Spectrum quits to that application. Quitting that application will not restart
Spectrum.

In either case the user is not asked if he wants to save the capture buffer, but a Save Buffer command will be issued
automatically if the AutoSaveBuffer option is on.

Variables 59

Variables

Set Variable VarNum "String"
Shortcut: Set Var VarNum "String"

Set the contents of the specified variable number to be the given string.

Example:
Set Variable 0 "Spectrum is cool!^M^J"
Display "$0$0$0$0"

Store Variables
Shortcut: Store Vars

Stores the current values of the ten numbered variables.

Restore Variables
Shortcut: Restore Vars

Restores the ten numbered variables to the previously-stored values.

Clear Variables
Shortcut: Clear Vars

Clears the ten numbered variables to "".

Variables 60

Concatenate "String1" "String2" VarNum

Appends String2 onto the end of String1 and places the result into the specified variable number. If the length of String1 and
String2 is greater than 128 characters, the result is truncated to 128 characters and the Failed flag is set.

Example:
Display "What adjective describes Spectrum? "
Get Line 0
Concatenate "Spectrum is " "$0" 1
Concatenate "$1" "!^M^J" 1
Display "$1$1$1$1"

NOTE: Only a single Concatenate command was really needed; we used two steps to illustrate that it is perfectly acceptable
to specify a variable for one of the strings, then to store the result back into that same variable.

Position "String" "ToFindString" Start VarNum
Start can be from 1 to 128

Sets variable number VarNum to indicate the character position at which ToFindString is found in String. Start indicates
which character to start searching from. If Start is 0, or if Start is greater than the length of String, or if ToFindString is not
found in String, then $VarNum is set to 0.

Example:
Display "Type your first and last name: "; Get Line 0
Position "$0" " " 1 1 # looks for a space starting at character 1; stores the position in $1
If Equal "$1" "0" Then Display "You didn't enter a space between your first and last name."; Stop

Script

Variables 61

Substring "String" Start Length VarNum
Start can be from 1 to 128
Length can be from 1 to 128

Sets $VarNum to the specified portion of String. If Start is 0, or if Start is greater than the length of String, then $VarNum is
set to "". If Length is greater than the length of String then $VarNum contains the characters from Start to the last character of
String.

Example:
Display "Type your first and last name: "; Get Line 0
Position "$0" " " 1 1 # looks for a space starting at character 1; stores the position in $1
If Equal "$1" "0" Then Display "You didn't enter a space between your first and last name."; Stop

Script
Decrement 1 # the character before the space
Substring "$0" 1 $1 2 # everything to the left of the space is put into $2
Increment 1; Increment 1 # the character after the space
Substring "$0" $1 128 3 # everything to the right of the space is put into $3
Display "^M^JYour first name is: $2^M^J"; Display "Your last name is: $3^M^J"; Stop Script

Increment VarNum
Shortcut: INC VarNum

Increments the contents of the specified variable number by 1. The variable must contain a valid number in order for this
command to work. The number will not increment above 4,294,967,295.

Example:
Set Variable 0 "12345"
Display "Starting at: $0^M^J"
Increment 0
INC 0 # the shortcut version
Display " Result is: $0^M^J"

Variables 62

Decrement VarNum
Shortcut: DEC VarNum

Decrements the contents of the specified variable number by 1. The variable must contain a valid number in order for this
command to work. The number will not decrement below 0.

Example:
Set Variable 0 "12345"
Display "Starting at: $0^M^J"
Decrement 0
DEC 0 # the shortcut version
Display " Result is: $0^M^J"

Get Random Value VarNum
Value can be from 1 to 65535

Places a random number from 1 to Value into the specified variable number.

Add Value1 Value2 VarNum

Adds Value1 to Value2 and places the result into the specified variable number.

Subtract Value1 Value2 VarNum

Subtracts Value2 from Value1 and places the result into the specified variable number.

Multiply Value1 Value2 VarNum

Multiplies Value1 by Value2 and places the result into the specified variable number.

Variables 63

Divide Value1 Value2 VarNum

Divides Value1 by Value2 and places the result into the specified variable number. NOTE: Because values are positive
integers, any remainder from the division is thrown away (e.g. the result of 5 divided by 2 is 2, not 2.5).

Example:
Set Variable 0 "100"; Set Variable 1 "25"
Add $0 $1 2; Display "$0+$1=$2^M^J"
Subtract $0 $1 2; Display "$0-$1=$2^M^J"
Multiply $0 $1 2; Display "$0*$1=$2^M^J"
Divide $0 $1 2; Display "$0/$1=$2^M^J"

Compare Value1 Value2 VarNum

Compares Value1 to Value2 and places the result into the specified variable number (1 means Value1<Value2; 2 means
Value1=Value2; 3 means Value1>Value2)

Example:
Get Random 100 0
Display "^LI picked a number from 1-100. Now you try to guess what it is!^M^J^J"
GuessLoop
Display "What is your guess? "; Get Line 1
Compare $1 $0 2 # compare the guess to the random number
On $2 GotoNext Less, Equal, More
Less
Display "^M^JToo low!^M^J^J"; Goto GuessLoop
Equal
Display "^G^M^JYou guessed right!^M^J^J^G"; Stop Script
More
Display "^M^JToo high!^M^J^J"; Goto GuessLoop

Variables 64

Swap VarNum1 VarNum2

Swaps the contents of the two variables.

Example:
Set Var 1 "One"; Set Var 2 "Two"
Swap 1 2; Display "1=$1 2=$2^M^J^J"

Getting Input 65

Getting Input

Set Timeout Value
Value can be from 0 to 65535

When waiting for input using any of the “Getting Input” commands, Spectrum waits for Value seconds before it gives up and
continues executing the script. If Value is 0 Spectrum will wait forever.

If you use a timeout for an input command, test to see if the input “failed” (timed out) before using the input.

Example:
Display "What is your favorite letter? "
Set Timeout 5; WaitFor Keyboard
If Failed Then Display "^M^JApparently you can't decide what your favorite is!^M^J"; Stop Script
Display "^M^JYes, '$MatchString' is a nice letter!^M^J"; Stop Script

Set KeyLock State
State can be Off or On

Locks out keyboard entry that would be sent directly to the port, and prevents keyboard input to the Get Key and Get Line
commands. Turning this option on prevents the user from interfering with the data that a script is transmitting or waiting for.

WaitFor Keyboard
Waits for the next keypress (Spectrum processes characters coming in from the port, but this command ignores them). When
a keypress is received the Failed flag is cleared, $MatchString is set to the key that was pressed, and $Matched is set to 1.
You can test for which key was pressed by using the If Keyboard command.

If a timeout was used and time ran out, the Failed flag is set, $MatchString is cleared, and $Matched is set to 0.

Getting Input 66

WaitFor String "String1" "String2" … "String7" "String8"
At least one string is required; up to eight may be specified. Commas are optional between each string.

Spectrum processes characters coming in from the port and watches for the specified string (the CaseSensitive setting affects
the comparison). If one of the strings is found then the Failed flag is cleared, $MatchString is set to the string that was found,
and $Matched is a number that indicates which string was matched.

If a timeout was used and time ran out, the Failed flag is set, $MatchString is cleared, and $Matched is set to 0.

Example:
Set Timeout 15; Set CaseSensitive Off
Transmit "ATDT555-1234^M"
WaitFor String "Connect" "Busy" "No Carrier"
If Failed Then Stop Script
On $Matched Goto Logon, Redial, Redial

Get Key VarNum

Gets one character from the port or the keyboard (if KeyLock is off) then stores it into the specified variable.

If a timeout was used and time ran out, the Failed flag is set and the specified variable is cleared.

Get Line VarNum

Accepts up to 128 characters from the port or the keyboard (if KeyLock is Off). When the Return key is pressed the line is
stored into the specified variable.

If a timeout was used and time ran out, the Failed flag is set and the specified variable is cleared.

Getting Input 67

Input Keyboard
Waits for the next keypress. If Flush is Off then characters coming in from the port are not processed; if Flush is On then
incoming characters are processed, but this command ignores them (it watches the keyboard only).

When a keypress is received the Failed flag is cleared, $MatchString is set to the key that was pressed, and $Matched is set to
1. You can test for which key was pressed by using the If Keyboard command.

If a timeout was used and time ran out, the Failed flag is set, $MatchString is cleared, and $Matched is set to 0.

Input Key VarNum

Gets one character from the keyboard and stores it into the specified variable. If Flush is Off then characters coming in from
the port are not processed; if Flush is On then incoming characters are processed, but this command ignores them (it watches
the keyboard only).

If a timeout was used and time ran out, the Failed flag is set and the specified variable is cleared.

Input Line VarNum

Accepts up to 128 characters from the keyboard. When the Return key is pressed the line is stored into the specified variable.
If Flush is Off then characters coming in from the port are not processed; if Flush is On then incoming characters are
processed, but this command ignores them (it watches the keyboard only).

If a timeout was used and time ran out, the Failed flag is set and the specified variable is cleared.

Getting Input 68

Ask1 "Question" "Button1" VarNum
Ask2 "Question" "Button1" "Button2" VarNum
Ask3 "Question" "Button1" "Button2" "Button3" VarNum
Question is a string up to 68 characters long
Button# is a string up to 12 characters long

Displays an alert window on the super hires screen that contains the question and the buttons. After this statement VarNum
contains 1, 2, or 3 to indicate which button number was chosen.

The “#” and “*” are special characters in an alert, so to display them you must use them twice (see the example below).
NOTE: No substitution array is defined so using embedded “*” codes will do nothing.

The strings can include these alert replacement items:
#0 OK #2 Yes #4 Try Again #6 Continue
#1 Cancel #3 No #5 Quit

The beginning of one button string can include “^^” to indicate that button should be the default choice.

Example:
Ask3 "Special ## characters **?" "#1 This" "#3 Way" "^^#2!" 0
Display "You chose button number $0.^M^J"

Branching and Loops 69

Branching and Loops

Set Labels State
State can be Off or On

This command controls whether pressing Option- # (where # is a number from 0 to 9) will attempt to “Gosub” that label (the
given routine should include a Return or Pop). NOTE: No error is generated if a numbered label does not exist. The label
search begins at the top of the script each time, so control passes to the first matching label.

Goto Label

Script control jumps to the commands after the first occurrence of Label (the label search begins at the top of the script).

Example:
Goto Begin
Display "This will never be displayed!"
Begin
Display "Hello!^M^J"; Stop Script

GotoNext Label

Script control jumps to the commands after the next occurrence of Label (the label search begins on the line after the current
statement).

Because searching does not begin at the top of the script, GotoNext is slightly faster than Goto. It is also useful in creating
“modular” subroutines…if the subroutine is structured to use GotoNext instead of Goto, you can cut and paste the subroutine
without fear of any label names conflicting with labels in the script you’re pasting into.

Branching and Loops 70

Gosub Label

Script control temporarily transfers to the commands after the first occurrence of Label (the label search begins at the top of
the script). When the Return command is encountered, script control returns to the statement following the Gosub command.

Gosub is short for “go subroutine.” Subroutines are very useful (but not required). Imagine you were writing a script that
needed to use the same ten commands three different places in a script. Instead of writing those ten commands each time,
write the ten commands only once as a “subroutine.” Whenever those ten commands are needed you simply “gosub” to that
subroutine.

Up to 16 Gosub commands can be active, which means one “subroutine” can call another.

Example without a subroutine:
Set Var 6 "This is an example"; Display "Variable 6 is '$6'.^M^J"; Display "The length is

$Length6.^M^J"
Set Var 6 "of how subroutines"; Display "Variable 6 is '$6'.^M^J"; Display "The length is

$Length6.^M^J"
Set Var 6 "can be useful."; Display "Variable 6 is '$6'.^M^J"; Display "The length is

$Length6.^M^J"

Example with a subroutine:
Set Var 6 "This is an example"; Gosub ShowVar6
Set Var 6 "of how subroutines"; Gosub ShowVar6
Set Var 6 "can be useful."; Gosub ShowVar6

ShowVar6
Display "Variable 6 is '$6'.^M^J"; Display "The length is $Length6.^M^J"
Return

Although the second script might look longer, it actually contains 100 characters less than the first script! Also, imagine what
would happen if you wanted to know whether or not variable 6 contained the letter “a”…instead of adding commands to
three separate locations you simply have to add this to the subroutine (just above the Return command):

Branching and Loops 71

Position "a" "$6" 1 1; If Not Equal "$1" "0" Then Display "There is at least one 'a' in that
phrase.^M^J"

GosubNext Label

Script control temporarily transfers to the commands after the next occurrence of Label (the label search begins on the line
after the current statement). When the Return command is encountered, script control returns to the statement following the
Gosub command. Because searching does not begin at the top of the script, GosubNext is slightly faster than Gosub.

Return
When the Gosub or GosubNext command is encountered, Spectrum remembers where the statement is. When the Return
command is encountered, Spectrum returns control to that point.

Example:
Gosub th; Display "ree "; Gosub th; Display "in "; Gosub th; Display "ings!"; Stop Script
th
Display "Th"; Return

Pop
When the Gosub or GosubNext command is encountered, Spectrum remembers where the statement is. Using the Pop
command makes Spectrum forget the most recent Gosub, which causes the next Return command to return control to the
statement following the second most recent Gosub. NOTE: This can be confusing and is intended for advanced script authors
only.

Example:
Gosub One; Display "Finished.^M^J"; Stop Script
One
Display "Inside ONE..."; Display "Leaving ONE..."; Gosub Two; Display "Back in ONE..."; Return
Two

Branching and Loops 72

Display "Inside TWO..."; Display "Leaving TWO..."; Gosub Three; Display "Back in TWO..."; Return
Three
Display "Inside THREE..."
Pop # this forgets about "Gosub Three"
Pop # this forgets about "Gosub Two"
Return # which means this returns to the statement after "Gosub One"

Pop All
Similar to the Pop command, except Pop All makes Spectrum forget all Gosub commands. Most often useful in a generic
error handler routine. NOTE: This can be confusing and is intended for advanced script authors only.

On Value Goto Label1, Label2 … Label7, Label8
At least one label is required; up to eight may be specified

Performs a Goto based on the Value (e.g. if Value is 1 then script control passes to the first label; if Value is 5 then script
control passes to the fifth Label). NOTE: The label search begins at the top of the script each time, so control passes to the
first matching label.

If Value is 0 then script control “falls through” to the next statement and the Failed flag is set.

Example:
Set Timeout 10; WaitFor String "CONNECT" "BUSY"
If Failed Goto Abort
On $Matched Goto Logon, Redial

On Value GotoNext Label1, Label2 … Label7, Label8
At least one label is required; up to eight may be specified

Similar to On…Goto except that the label search begins at the current statement, so control passes to the first matching label
after this statement.

Branching and Loops 73

On Value Gosub Label1, Label2 … Label7, Label8
At least one label is required; up to eight may be specified

Performs a Gosub based on the value (e.g. if Value is 1 then script control passes to the first label; if Value is 5 then script
control passes to the fifth label). When a Return command is encountered control returns to the statement after the On value
Gosub command. NOTE: The label search begins at the top of the script each time, so control passes to the first matching
label.

If Value is 0 then script control “falls through” to the next statement and the Failed flag is set.

Up to 16 Gosub commands can be active, which means one “subroutine” can call another.

Example:
Options
Display "Type a number from 1-3: "; WaitFor Keyboard
On $MatchString Gosub One, Two, Three; Goto Options
One
Display "One^M^J"; Return
Two
Display "Two^M^J"; Return
Three
Display "Three^M^J"; Return

On Value GosubNext Label1, Label2 … Label7, Label8
At least one label is required; up to eight may be specified

Similar to On…Gosub except that the label search begins at the current statement, so control passes to the first matching
label after this statement.

Branching and Loops 74

For LoopNumber Start Stop Increment
LoopNumber can be from 0 to 9
Start is a value from 0 to 65535
Stop is a value from 0 to 65535
Increment is optional; if used it is a value from 1 to 65535

The “For” loop lets you easily repeat a sequence of statements a number of times. The loop is controlled by a counter. The
For command initializes the counter to Start, and the counter is incremented each time a Next command is encountered.
When the counter passes Stop the loop stops. Unless specified, Increment is 1. The current counter value can be determined
by using $ForValue # (where # is a number from 0 to 9).

Example:
Display "^LFor/Next loops are much faster than loops done manually!^M^J^J"
Display "Counting with a manual loop: "; Store XY
Set Var 0 "1"
ManualLoop
Restore XY; Display "$0^M^J"
If Not Equal "$0" "100" Then Inc 0; Goto ManualLoop
Display "Counting with a For/Next loop: "; Store XY
For 0 1 100
Restore XY; Display "$ForValue0^M^J"
Next 0
Display "Done!^M^J"

Next LoopNumber
LoopNumber can be from 0 to 9

Tests to see if the loop is finished. If not, control returns to the statement after the For command. Otherwise control continues
to the statement immediately after the Next command.

Branching and Loops 75

Clear For LoopNumber
LoopNumber can be from 0 to 9

Clears loop number LoopNumber and sets the counter value to 0. If a Next command is encountered, control continues to the
statement immediately after the Next command.

Store ForLoops
Remembers the current state of all the For loops.

Restore ForLoops
Restores the saved state of all the For loops.

Conditional Tests 76

Conditional Tests

If Equal "String1" "String2" Then Statement

If String1 and String2 are exactly the same then Statement is executed, otherwise control drops to the next line.

Example:
If Equal "THIS" "this" Then Display "The CaseSensitive option is OFF.^M^J"; Stop Script
Display "The CaseSensitive option is ON.^M^J"

If Not Equal "String1" "String2" Then Statement

If String1 and String2 are not exactly the same then Statement is executed, otherwise control drops to the next line.

Example:
Display "What is your password? "; Get Line 0
If Not Equal "$0" "Garfblat" Then Display "Wrong password!^G^M^J"; Stop Script
Display "Correct!^M^J"

If Contains "LongString" "ShortString" Then Statement

If ShortString is found anywhere in LongString then Statement is executed, otherwise control drops to the next line.

Example:
If Contains "This is a test" "this" Then Display "YES"; Stop Script
Display "NO"

If Not Contains "LongString" "ShortString" Then Statement

If ShortString is not found anywhere in LongString then Statement is executed, otherwise control drops to the next line.

Conditional Tests 77

Example:
Ask
Display "Do you want to continue? "; WaitFor Keyboard
If Not Contains "YN" "$MatchString" Then Display "^M^JTry Again!^M^J"; Goto Ask

If Keyboard Character Then Statement

If the key pressed in the most recent WaitFor Keyboard command is the same as Character then Statement is executed,
otherwise control drops to the next line.

Example:
Continue
Display "Do you want to continue? "; WaitFor Keyboard
If Keyboard Y Then Return
If Keyboard N Then Pop; Display "^M^JGoodbye!^M^J"; Stop Script
Display "^G"; Goto Continue

If Not Keyboard Character Then Statement

If the key pressed in the most recent WaitFor Keyboard command is not the same as Character then Statement is executed,
otherwise control drops to the next line.

Example:
Wait
Display "Press the Spacebar to continue."; WaitFor Keyboard
If Not Keyboard " " Then Display "^G"; Goto Wait

If Exists "FoldernameFilename" Then Statement

If the specified file exists then Statement is executed, otherwise control drops to the next line.

Typically you would check to see if a file exists before you attempt to delete or work with the file, thus avoiding errors.

Conditional Tests 78

Example:
If Exists "$SpectrumPathCapture.File" Then Show File "$SpectrumPathCapture.File"; Goto NextThing
Display "^GThere is no capture file to examine!^M^J"
NextThing
Display "That's all for now!^M^J"; Stop Script

If Not Exists "FoldernameFilename" Then Statement

If the specified file does not exist then Statement is executed, otherwise control drops to the next line.

Typically you would make sure a file does not exist so you won’t accidentally overwrite an important file.

Example:
Gosub GetCaptureName; Display "Capturing to $0..."; Stop Script
GetCaptureName
Display "Capture text to what filename? "; Get Line 0
If Not Exists "$SpectrumPath$0" Then Return
Display "^M^J^GThat name is already used--"; Goto GetCaptureName
In reality you should use the Get File command to let the user specify a name and location of

the file.

If Failed Then Statement

If the Failed flag is set then Statement is executed, otherwise control drops to the next line. NOTE: “If Failed” is the same as
“If Not Found”.

The Failed flag is set or cleared by various commands (e.g. Dial, WaitFor, etc.). The If Failed command can be used to
determine if a command failed. NOTE: The Failed flag is correct only following a command that sets or clears it…test the
flag immediately after these commands (do not put statements between the command and the ”If Failed” test).

Example:
Ask

Conditional Tests 79

Display "^M^JPress a key to continue..."
Set Timeout 5; WaitFor Keyboard
If Failed Then Display "Hurry up!^G^M^J"; Goto Ask
Return

If Not Failed Then Statement

If the Failed flag is clear then Statement is executed, otherwise control drops to the next line. NOTE: “If Not Failed” is the
same as “If Found”.

The Failed flag is set or cleared by various commands (e.g. Dial, WaitFor, etc.). The If Not Failed command can be used to
determine if a command was successful. NOTE: The Failed flag is correct only following a command that sets or clears
it…test the flag immediately after these commands (do not put statements between the command and the ”If Not Failed”
test).

Example:
Dial String "555-1234"
If Not Failed Then Goto Connected
Display "The dial command failed.^M^J"; Stop Script

If Found Then Statement

If the Found flag is set then Statement is executed, otherwise control drops to the next line. NOTE: “If Found” is the same as
“If Not Failed”.

The Found flag is set or cleared only by the WaitFor commands that use a Timeout (Found is set if the WaitFor command
succeeds).

Example:
Ask
Display "^M^JPress a key to continue..."
Set Timeout 5; WaitFor Keyboard

Conditional Tests 80

If Found Then Return
Display "Hurry up!^G^M^J"; Goto Ask

If Not Found Then Statement

If the Found flag is clear then Statement is executed, otherwise control drops to the next line. NOTE: “If Not Found” is the
same as “If Failed”.

The Found flag is set or cleared only by the WaitFor commands that use a Timeout (Found is cleared if the WaitFor
command times out).

Example:
Ask
Display "^M^JPress a key to continue..."
Set Timeout 5; WaitFor Keyboard
If Not Found Then Display "Hurry up!^G^M^J"; Goto Ask
Return

If Null VarNum Then Statement

If the given variable number is empty ("") then Statement is executed, otherwise control drops to the next line.

Example:
Display "What is your name? "; Get Line 0
If Null 0 Then Display "We'll call you 'Fred' because you didn't type anything!^M^J"; Set

Variable 0 "Fred"
Display "Hello there, $0!^M^J"

If Not Null VarNum Then Statement

If the given variable number is not empty then Statement is executed, otherwise control drops to the next line.

Conditional Tests 81

Example:
Display "What is your name? "; Get Line 0
If Not Null 0 Then Display "Hello there, $0!^M^J"

If Even VarNum Then Statement

If the value of the given variable number is an even number then Statement is executed, otherwise control drops to the next
line. NOTE: “If Even” is the same as “If Not Odd”.

If Not Even VarNum Then Statement

If the value of the given variable number is not an even number then Statement is executed, otherwise control drops to the
next line. NOTE: “If Not Even” is the same as “If Odd”.

If Odd VarNum Then Statement

If the value of the given variable number is an odd number then Statement is executed, otherwise control drops to the next
line. NOTE: “If Odd” is the same as “If Not Even”.

If Not Odd VarNum Then Statement

If the value of the given variable number is not an odd number then Statement is executed, otherwise control drops to the next
line. NOTE: “If Not Odd” is the same as “If Even”.

If CarrierDetect Then Statement

NOTE: This command is reliable only if your modem properly controls the DCD signal, and you have a properly-wired
modem cable, and the “DCD Handshake” option is on.

If the modem is currently connected to a host then Statement is executed.

Conditional Tests 82

If Not CarrierDetect Then Statement

NOTE: This command is reliable only if your modem properly controls the DCD signal, and you have a properly-wired
modem cable, and the “DCD Handshake” option is on.

If the modem is not currently connected to a host then Statement is executed.

Example:
- Run this script when you are NOT online
Transmit "AT&C1^M" # - a common modem command so the modem will adjust the DCD line to indicate

whether a remote modem's data carrier tone is present
Set DCD On # - set Spectrum so it trusts the DCD signal
Display "Your setup apparently does "
If CarrierDetect Then Display "NOT "
Display "support DCD.^M^J"

If Debug Then Statement

If debugging is currently “Screen” or “Scrollback,” then Statement is executed.

If Not Debug Then Statement

If debugging is currently off then Statement is executed.

If TheManager Then Statement

If Spectrum is currently being run under The Manager (Seven Hills Software’s multi-tasking environment for the Apple
IIGS) then Statement is executed.

If Not TheManager Then Statement

If Spectrum is not currently being run under The Manager then Statement is executed.

Screen Appearance 83

Screen Appearance

Set ChatLine State
State can be Off or On

Controls whether the chat line is visible or not. NOTE: Some online displays do not support a chat line.

Set AutoChat State
State can be Off or On

Normally when the chat line is turned on, the port is automatically set to full duplex. When the chat line is turned off the
original duplex setting is restored. If you turn AutoChat off, Spectrum will not automatically change the duplex setting when
the chat line is turned on and off.

Set StatLine State
State can be Off or On

Controls whether the status line is visible or not. NOTE: Some online displays do not support a status line.

Store XY
Stores the current cursor position and sets the values for $StoredX and $StoredY.

Restore XY
Restores the cursor position that was last stored using the Store XY command.

Screen Appearance 84

GotoXY X,Y
X (horizontal position) is a value from 0 to 79
Y (vertical position) is a value from 0 to 23

Attempts to move the cursor to the specified screen position. The limits for each value depend upon the online display being
used. Be aware that the setting of the chat line and status line might also affect the range of acceptable values.

Draw Window Left Right Top Bottom
Left and Right are values from 0 to 79
Top and Bottom are values from 0 to 23

Draws a window extending from (Left, Top) to (Right, Bottom). The limits for each value depend upon the online display
being used. Be aware that the setting of the chat line and status line might also affect the range of acceptable values. A script
error occurs if a value is used that would place a window coordinate off the screen.

After drawing the window you can use the GotoXY and Display commands to display something within the window.
NOTE: The window is simply a visual effect—text you display can easily overwrite a window’s frame.

Print Screen

Prints the current screen to the printer, just as if Shift- 4 was pressed.

Save Screen

Saves the current screen to disk, just as if Shift- 3 was pressed.

Screen Appearance 85

Set Flush State
State can be Off or On

Incoming data is stored in the port buffer until Spectrum has time to deal with it. When Flush is On, data in the port buffer is
processed constantly. When Off, data in the port buffer is processed only during Get Key, Get Line, WaitFor Keyboard, and
WaitFor String commands (or when the script stops), which makes those commands more reliable.

Set Screen State
State can be Off or On

This command determines whether incoming or outgoing data is displayed on the screen when a script is running (incoming
data will still be captured if the capture buffer is turned on, and it will still be seen by the WaitFor, Get Line , and Get Key
commands). Commands that directly display to the screen, such Display, will continue to display on the screen.

Screen Appearance 86

Set ScreenBlank State
State can be Off, On, or Auto

Controls a built-in screen blanker that blanks the screen (except for the border color). The screen is blanked only while a
script is being run…when the script stops the screen is unblanked. NOTE: If the Twilight II screen blanker is active,
Spectrum asks it to “background blank” the screen.

Off: The screen is not blanked.

On: Blanks the screen immediately.

Auto: Blanks the screen only during WaitFor commands. In the example script below, the screen will be blanked until 7pm,
at which time it will unblank (in case you happen to want to watch the online session), dial a service, send and receive mail,
then log off. The final WaitFor command will blank the screen until you press a key.

Example:
Set ScreenBlank Auto
WaitFor Time "19:00" # wait until 7pm
Dial Service "CompuServe" # dial CompuServe
If Not Failed Then Gosub Login; Gosub SendMail; Gosub ReadMail; Hangup
WaitFor Keyboard; Stop Script # wait until a key is pressed

Prefix Control 87

Prefix Control

Set SFPrefix "Foldername"
Sets GS/OS prefix 0 and prefix 8 to the specified folder.

Set GSPrefix Value "Foldername"
Value can be 0, 2 through 8, or 10 through 31

Sets the specified GS/OS prefix number to the specified folder. Prefix numbers, followed by a colon, can be used as shortcuts
wherever a Foldername is required. For example, Show Catalog "8:" will list the files stored in the prefix 8 folder.

Prefix 1 and 9 is the folder where Spectrum is located and therefore it cannot be changed. All the other prefixes are not used
by Spectrum so they are available to scripts.

Prefix 0 is a working path; NDAs and applications change this frequently. Prefix 8 is the current prefix. The next time an
“Open” or “Save” dialog box appears, the prefix 8 folder will appear. Prefix 0 and prefix 8 can be changed independently, but
usually they are set together (use the Set SFPrefix command as a shortcut).

Prefix 0 and 8 are volatile—they can be changed by desk accessories, loading a file in the Spectrum editor, and so on.
Therefore it is better to use higher numbered prefixes to remember a prefix for a long time.

Example:
Set GSPrefix 21 "$BootSystem" # The system folder on the disk we booted from (e.g. :Hard:System)
Set GSPrefix 22 "21:Desk.Accs" # this is identical to typing "$BootSystem:Desk.Accs"
Set GSPrefix 23 "21:Fonts"
Display "Your Desk Accessories:^M^J"; Show Catalog "22:"
Display "Your Fonts:^M^J"; Show Catalog "23:"

Capture Buffer Control 88

Capture Buffer Control

Set Buffer State
State can be Off, On, Auto, or Manual

Off/On: Determines whether or not incoming characters are saved into the capture buffer or the capture file (whichever is
active). NOTE: Script commands that record directly to the buffer will do so regardless of this setting.

Auto/Manual: Controls the “Auto buffer control” checkbox in the Online Displays Settings dialog box. When this option is
set to Auto, the host can turn your capture buffer on and off by sending a ^R or ^T, respectively. NOTE: Auto buffer control
works only if the capture buffer has been turned off.

Clear Buffer
Clears the capture buffer so it contains no characters.

Open CaptureFile "FoldernameFilename"
Deletes the specified file if it exists, then creates a new file and begins capturing incoming data to it instead of to memory.

Append CaptureFile "FoldernameFilename"
Opens the specified text file and begins capturing incoming data to the end of it.

Close CaptureFile
Closes the capture file and resumes storing incoming data into memory.

Capture Buffer Control 89

Set Append State
State can be Off or On

Determines whether data is appended to the end of an existing file or whether data overwrites any existing file when using
the Save Buffer or Write Buffer commands (see those commands for more information).

Set AutoSave "FoldernameFilename"
Filename must be at least three characters long

Specifies the file to use when saving the capture buffer using the Save Buffer command. This is used as a shortcut…you can
establish this AutoSave filename and whenever you need to save the capture buffer just issue a Save Buffer command (as
opposed to using Write Buffer "FoldernameFilename" each time you need to save the capture buffer).

Set AutoSaveBuffer State
State can be Off or On

Determines what occurs when the capture buffer completely fills. When on, Spectrum automatically issues a Save Buffer
command; when off the user is presented with a dialog box from which he can clear or save the capture buffer.

Save Buffer
If the Append flag is off, the AutoSave filename is incremented by 1 and a new file is created. NOTE: If there is no number
as the last character of the filename then a “1” is inserted (if a number is there it gets incremented). When the number at the
last position gets to 9 then the second to last character is set to 1 or increments if it’s already a number. The maximum is 99
files, at which point you get an error “name no longer valid.”

If the Append flag is on, the AutoSave filename is not changed and the capture buffer contents are appended to the end of the
existing AutoSave filename (if the file doesn’t exist yet it is created).

After saving the contents of the capture buffer, the buffer is cleared.

Capture Buffer Control 90

Write Buffer "FoldernameFilename"
If the Append flag is off, the specified file is deleted if it already exists, then the capture buffer contents are saved.

If the Append flag is on, if the file exists it is not deleted (if Filename does not exist it is created). The capture buffer contents
are appended to the end of the existing file.

After writing the contents of the capture buffer, the buffer is cleared.

Load Buffer "FoldernameFilename"
Loads the file into the capture buffer.

Transferring Files 91

Transferring Files

Send File "FoldernameFilename" Protocol
Protocol can be Text, ProDOS, Xmodem, 1KXmodem, 4KXmodem, BPlus, Ymodem, or Zmodem

Sends the specified file using the specified protocol. A file transfer dialog box appears for all protocols except possibly Text
(which depends upon the ULTextShow setting).

See the “File Transfer Settings” section for settings that apply to file transfers. For example, the “Turbo” option determines
whether regular Ymodem or Ymodem-g is used.

If the transfer fails the Failed flag is set, otherwise it is clear.

Receive File "FoldernameFilename"
Spectrum automatically detects which protocol is being used, then it receives a file via Xmodem, 1K Xmodem, 4K Xmodem,
Ymodem, or Ymodem-g and saves it as FoldernameFilename.

If the transfer fails the Failed flag is set, otherwise it is clear.

Receive File Protocol
Protocol can be BPlus or Zmodem

Receives a file using the specified protocol and saves it into the current file transfer folder ($FileXferPath). The filename is
not needed because it is provided by the incoming data.

When receiving a Zmodem file the same process is used that is used for an “auto receive” file, except that the script can
control how long Spectrum waits for the transfer to start. Set the wait time using Set Timeout with a value from 10 to 600 (10
seconds to 10 minutes).

If the transfer fails the Failed flag is set, otherwise it is clear.

OS Utilities 92

OS Utilities

Delete File "FoldernameFilename"
Permanently deletes the specified file. Use with caution!

Example:
Set Var 0 "$ScriptPathTemporary.File"
If Exists "$0" Then Delete "$0"

Rename File "Foldername1Filename1" "Foldername2Filename2"
Renames the first item to the second name. The folder names can either refer to the same folder (which just renames
Filename), or they can refer to different folders on the same disk (which moves Filename into the second folder). For
example…

Rename ":Hard:Spectrum:Capture.File" ":Hard:Archives:Capture"

…renames “Capture.File” to be called “Capture” and it moves it from the Spectrum folder into the Archives folder (which
must already exist on the same disk).

Copy File "Foldername1Filename1" "Foldername2Filename2"
Makes an exact copy of the first file. The copy is named Filename2 and is stored in the Foldername2 folder.

Create Folder "FoldernameFilename"
Creates a new folder named Filename in the Foldername folder.

OS Utilities 93

Get FileSize "FoldernameFilename" VarNum

The number of bytes in the specified file’s data and resource forks.

Get VolumeSize "Volumename" VarNum

The total size of the specified disk, in bytes.

Get VolumeFree "Volumename" VarNum

The number of bytes of free space on the specified disk.

Get FileInfo "FoldernameFilename" VarNum

Gets information about the specified file. The information is in the following format (use the Substring command to extract
the desired pieces of information):

Start Length Information
1 31 Filename
33 3 3-letter abbreviation for common filetypes or $00
37 8 Length (data fork plus resource fork)
46 1 D=Can Destroy (blank space if not)
47 1 N=Can Rename (blank space if not)
48 1 B=Needs Backup (blank space if not)
49 1 W=Can Write (blank space if not)
50 1 R=Can Read (blank space if not)
52 2 Hexadecimal filetype
55 4 Hexadecimal auxtype

OS Utilities 94

Example:
Get FileInfo "$ScriptPath$ScriptFile" 0
Substring "$0" 1 31 1 # $1 now has the name
Substring "$0" 33 3 2 # $2 now has the type
Substring "$0" 46 5 3 # $3 now has the file flags
Display "Name: $1^M^JType: $2^M^JInfo: $3^M^J=====^M^J"

Show Catalog "Foldername"
Shows a listing of the items stored in the specified folder. If you also want to send the listing to the port, Set Echo On before
showing it.

ShowRecord Catalog "Foldername"
A listing of the items stored in the specified folder is shown on the screen and recorded to the capture buffer. If you also want
to send the listing to the port, Set Echo On before showing it.

Record Catalog "Foldername"
A listing of the items stored in the specified folder is recorded into the capture buffer.

Show File "FoldernameFilename"
Shows the specified AppleWorks Classic, Teach, or Text file on the screen. If you also want to send the listing to the port,
Set Echo On before showing it.

OS Utilities 95

Get File "PromptString" Kind VarNum
Kind can be 0 (any file), 1 (text only), or 2 (text, AppleWorks, or Teach)

Presents the standard “Open” file dialog box in which the user can select a file. PromptString is shown at the top of the dialog
box (e.g. “Select the file to rename”). Only files matching the given Kind will be shown. NOTE: If the script can be run
unattended, do not use this command because it requires the user to interact with it (there is no “timeout”).

If the user cancels the dialog box the Failed flag is set and the specified variable number is cleared to "". If the user did not
cancel the dialog box, the specified variable number contains the name of the file that was highlighted and the prefix is set to
the folder that contains the file ($SFPrefix).

This command does not open or load a file; it merely provides a standard way for the user to select a file.

Example:
Get File "Select the file to format:" 2 0 # select a text, AppleWorks, or Teach file
If Failed Then Stop Script # user clicked Cancel
Load ScriptEditor "$0" # load the file into the script editor
Apply LowASCII; Apply RemoveControls; Apply LFsToCRs; Apply Format 3 # format message for posting
Save ScriptEditor "$0" # save the formatted file

OS Utilities 96

Put File "PromptString" "NameString" VarNum
NameString is optional; if not used “Untitled” is used

Presents the standard “Save” file dialog box in which the user specifies a filename and location to store a file. PromptString
is shown above the name (e.g. “Save the file as…”). NameString is the suggested name that will appear in the dialog box.
NOTE: If the script can be run unattended, do not use this command because it requires the user to interact with it (there is
no “timeout”).

If the user cancels the dialog box the Failed flag is set and the specified variable number is cleared to "". If the user did not
cancel, the specified variable number contains the name of the file they typed, and $SFPrefix indicates the folder they want
the file stored in.

This command does not create a file; it merely provides a standard way for the user to specify a filename and location. If the
command is successful you can be assured the returned Filename is a legal name.

The only special condition to be aware of is if the user specifies the name of a file that already exists on disk. In this case the
system has already received permission to replace the existing file, but it has not deleted it. To avoid errors you should follow
a successful Put File command with a statement to delete the file if it exists (see example).

Example:
Put File "Save mail as..." "Untitled" 0
If Failed Then Stop Script # user clicked Cancel
If Exists "$0" Then Delete "$0" # if the file already exists, delete it (the user has already

given permission)
Write Buffer "$0" # save the capture buffer using the filename the user specified

Reading and Writing Files 97

Reading and Writing Files
Up to four files (numbered 0, 1, 2, and 3) may be open at a single time. After a file is opened for reading or writing (using
either the Open or Append command) refer to the file using the FileNumber.

Open File FileNumber "FoldernameFilename"
FileNumber can be from 0 to 3

Opens the specified text file for reading or writing as file number FileNumber. If the file does not exist it is created.
NOTE: This command will also open Teach files, but only for reading (i.e. using Write File will cause an error).

If you want to write a file from scratch you should delete it first (if it exists) because writing to a file does not shorten the
file’s length. For example, if a text file contains 100 characters and you open it, write 15 characters, then close it, the file will
still contain 100 characters…15 new characters followed by the 85 old ones.

Append File FileNumber "FoldernameFilename"
FileNumber can be from 0 to 3

Opens the specified text file as file number FileNumber and sets the file marker to the end of the file so that writing will
occur at the end of the file.

Read File FileNumber VarNum
FileNumber can be from 0 to 3

Reads the file and stores the read characters into variable number VarNum. Reading stops when 128 characters are read,
when a CR is encountered, or when the end of the file is encountered.

If you attempt to read past the end of a file the Failed flag is set and variable number VarNum is set to "".

Reading and Writing Files 98

Write File FileNumber "String"
FileNumber can be from 0 to 3

Writes the string into the open file at the current position.

Close File FileNumber
FileNumber is optional; if used it can be from 0 to 3

Closes the specified file. If no FileNumber is used then all four files are closed (if open). If you forget to close a file you
open, it will be closed automatically when the script stops.

Reading Catalogs 99

Reading Catalogs
Up to four catalogs (numbered 0, 1, 2, and 3) may be opened at a single time. After a catalog is opened you refer to it using
the CatalogNumber.

Open Catalog CatalogNumber "Foldername"
CatalogNumber can be from 0 to 3

Opens the specified Foldername for reading. REMEMBER: A Foldername can be just a volume name, or a volume name plus
one or more folder names.

Read Catalog CatalogNumber VarNum
CatalogNumber can be from 0 to 3

Reads one catalog entry and stores information about it into variable number VarNum. If you attempt to read past the end of a
catalog the Failed flag is set and variable number VarNum is set to "".

Each entry is in the format described under the Get FileInfo command.

Close Catalog CatalogNumber
CatalogNumber is optional; if used it can be from 0 to 3

Closes the specified catalog. If no CatalogNumber is used then all four catalogs are closed (if open). If you forget to close a
catalog you open, it will be closed automatically when the script stops.

Script Editor 100

Script Editor
There is a text editor available just for scripts to use; it is entirely separate from the built-in text editor. The script editor can
be used to load a file, apply formats to it, and send or save the file.

The script editor commands are ideal for automatically formatting a message for posting, or for automatically formatting
incoming messages to be more readable.

Load ScriptEditor "Item"
Item can be a FoldernameFilename, or can be ::Scrollback, ::Buffer, or ::Clipboard

Loads the specified item into the script editor, replacing any existing script editor in memory. A script error occurs if the
specified item could not be loaded.

If Item specifies a file on disk, the file must be a text, Teach, or AppleWorks Classic file.

If Item is ::Scrollback, then contents of the current scrollback buffer are copied into the script editor. Likewise, ::Buffer
copies the current capture buffer contents and ::Clipboard copies the system clipboard contents. NOTE: As a shortcut you
can also use ::S, ::B, or ::C (everything after the first letter is ignored).

Append ScriptEditor "Item"
Item can be a FoldernameFilename, or can be ::Scrollback, ::Buffer, or ::Clipboard

Appends the specified item to the end of the current script editor. A script error occurs if the specified item could not be
appended.

If Item specifies a file on disk, the file must be a text, Teach, or AppleWorks Classic file.

Script Editor 101

If Item is ::Scrollback, then contents of the current scrollback buffer are appended onto the script editor. Likewise, ::Buffer
appends the current capture buffer contents and ::Clipboard appends the system clipboard contents. NOTE: As a shortcut you
can also use ::S, ::B, or ::C (everything after the first letter is ignored).

Save ScriptEditor "FoldernameFilename"
If a file has previously been loaded into memory, this command writes the file from memory to disk. If the specified file
already exists on disk it is deleted before the new text file is written. NOTE: Save ScriptEditor always creates a text file; if
you load a Teach file into the script editor then save it with the same name, you will be deleting the Teach file and replacing
it with a text file.

Saving the ScriptEditor does not clear the file from memory, which means you can load a file, apply a format, save that
version, apply another format, save that version, and so on. When you are done working with a file you should use the Clear
ScriptEditor command to erase the file from memory.

Clear ScriptEditor
Clears the ScriptEditor text from memory, thus making the memory available for other uses. You should always clear the
script editor when you are done using it. If you forget, the script editor will be cleared automatically when the script stops.

Send ScriptEditor
Sends the contents of the script editor via Text protocol. A file transfer dialog might appear (depends upon the
“ULTextShow” setting). See the “File Transfer Settings” section for settings that apply to file transfers.

If the transfer fails the Failed flag is set, otherwise it is clear.

Script Editor 102

Apply Replace "FindString" "ReplaceString" VarNum
VarNum is optional

Replaces all occurrences of FindString with ReplaceString, and stores the number of changes made into variable number
VarNum. The CaseSensitive option affects the search. NOTE: Because Apply Replace can take a long time to complete,
consider displaying a message to let the user know that your script is working.

You can search for control characters by using a caret (^) and the letter of the control character (e.g. use ^M to find all
carriage returns). To search for an actual caret character, use ^^.

Apply LowASCII
Converts the loaded text to low ASCII by stripping off the high bit.

Apply RemoveControls
Removes all control characters except for tabs, carriage returns, and linefeeds. If a backspace character (^H, ASCII $08) is
removed, the one preceding character is also removed.

Apply LFsToCRs
Changes all carriage return/linefeed combinations into a carriage return, and changes standalone linefeed characters into
carriage return characters.

Apply RemoveSpaces
Replaces two or more consecutive space characters with only a single space, and removes spaces before a carriage return

Apply Special Value
Value can be from 1-5

Applies one of the following special formats:

Script Editor 103

Value Special Format
1 all lower case
2 ALL UPPER CASE
3 All Proper Names
4 Capitalize sentences
5 Convert Viewdata to Text

Apply Format Value
Value can be from 1-4

Applies one of the following formats:

Value Format
1 CRs into spaces
2 Add line feeds
3 Lines into paragraphs
4 Paragraphs into lines

Example:
Load ScriptEditor "Message"; Display "Formatting..."
Apply Replace "…" "..." 1 # option-semicolon to ...
Apply Replace "—" "--" 1 # shift-option-dash to --
Apply LowASCII; Apply RemoveControls; Apply LFsToCRs; Apple Format 4
Display "done!^M^J"
Save ScriptEditor "Message"
Clear ScriptEditor

Error Control 104

Error Control

On Escape Goto Label

If the user presses Escape while a script is running, Spectrum normally cancels the script with an error message stating that
the script has been stopped. Some script authors might want to exit more gracefully if the user presses Escape, or perhaps
confirm that the user really wants to stop the script.

If the On Escape Goto command has been encountered, instead of cancelling the script Spectrum jumps to the given label. If
the label is not found then the script is cancelled in the usual way.

Although you can use Resume to continue the script from the point where the user pressed Escape, keep in mind that if he has
pressed Escape then he probably wants to stop the script. Therefore the commands located at Label should let the user exit
the script.

To turn off the On Escape Goto command, use an empty string ("") for the label.

Example:
On Escape Goto Quit # Also try running without this line to see what happens when you press ESC
Loop
Display "Press ESC to quit..."; Goto Loop
Quit
On Escape Goto ""
Display "^M^J^JThanks for using this script!^M^J"
Stop Script

On Escape GotoNext Label

Similar to the On Escape Goto command, except that Spectrum jumps to the next occurrence of Label (the search does not
begin at the top of the script). This is useful for creating “local” Escape handlers.

Error Control 105

On Error Goto Label

If a script error occurs while a script is running, Spectrum normally cancels the script and displays an error message. Some
script authors might want to catch certain errors or exit more gracefully if an error occurs.

If the On Error Goto command has been encountered and an error occurs, Spectrum jumps to the given label instead of
cancelling the script. If the label is not found then the script is cancelled in the usual way.

If you use the On Error Goto command, keep in mind that if a script error has occurred then the script probably should be
stopped, so the commands located at Label should clean things up and exit the script. To report the error to the user a script
can use the $ErrorMsg replacement item or the Show Error command.

To turn off the On Error Goto command, use an empty string ("") for the label.

Example:
Loop
Display "Perform what script command? "; Get Line 3; If Null 3 Then Stop Script
On Error Goto BadCommand # turn on error checking
$0 # execute the command that was typed
On Error Goto "" # turn off error checking
Goto Loop
BadCommand
Display "^M^J^GSpectrum doesn't recognize the command '$0'.^M^J^J"
Goto Loop

On Error GotoNext Label

Similar to the On Error Goto command, except that Spectrum jumps to the next occurrence of Label (the search does not
begin at the top of the script). This is useful for creating “local” Error handlers.

Error Control 106

Resume
Use only in an “On Escape Goto” or “On Error Goto” procedure

Continues running the script as if Escape was not pressed or as if the error did not occur. NOTE: This can be confusing and is
intended for advanced script authors only.

Show Error
Use only in an “On Error Goto” procedure

Displays the same error box that would appear if no On Error Goto command was encountered, but does not stop the script.
As usual, if the user does not respond to the error box within 30 seconds, the error box disappears automatically and
Spectrum hangs up the line (if necessary). This is a safety feature for scripts that run unattended (by hanging up, online
charges are kept to a minimum).

Script Interpretation 107

Script Interpretation

Set CaseSensitive State
State can be Off or On

The setting of the CaseSensitive option affects all text comparisons (e.g. Goto, Gosub, WaitFor String, If Contains, Apply
Replace, etc.). It does not affect script commands themselves (i.e. display, Display, DISPLAY, dIsPlAy work identically
regardless of the state of the CaseSensitive option). NOTE: Each time a script is run (not chained to) CaseSensitive is turned
off.

Example:
Display "Type ON or OFF: "; Get Line 0
Set CaseSensitive $0
Goto LaBeL
label
Display "CaseSensitive is OFF.^M^J"; Stop Script
LaBeL
Display "CaseSensitive is ON.^M^J"; Stop Script

Script Interpretation 108

Set Quote Character

Sets the special character that is used to delimit a string parameter—usually the double quote (") character. NOTE: This
command must be placed on a line by itself!

Example:
Set Quote A
Display A"You will see these quotes!^M^J"A
Set Quote "

Set Token Character

Sets the special character that is used to indicate a control character—usually the caret (^) character. NOTE: This command
must be placed on a line by itself!

Example:
Set Token \
Display "\LDisplaying ^L clears the screen.\M\J"
Set Token ^

Advanced or Specialty Commands 109

Advanced or Specialty Commands
NOTE: This section describes advanced or specialty commands that should be used with caution. Many of these
commands will not work unless a specific online display is being used. Information for each online display can be found
on disk in Spectrum’s “Documentation” folder.

DirectDisplay "String"
Feeds String to the current online display as if the data were coming in from the port. The interpretation of String is entirely
up to the current online display; use this command only when you know a particular display is in use and you want to take
advantage of special features in that display.

DirectAction "String" VarNum

Passes String to the current online display for processing; the results are returned in VarNum. If the display does nothing then
VarNum is cleared to "" and the Failed flag is set. If VarNum would be longer than 128 characters then a script error occurs.

The available actions that can be performed, as well as the meaning of the returned results, are entirely up to the current
display.

Draw Line Left Right Top Bottom Color Size
Left and Right are values from 0 to 639
Top and Bottom are values from 0 to 186
Color is optional; if used it is a value from 0 to 15
Size is optional; if used it is a value from 1 to 15

Draws a line extending from (Left,Top) to (Right,Bottom). If Color is specified the line is drawn with the specified color
(black if not specified). If Size is specified the line is Size pixels thick (1 pixel if not specified).

Advanced or Specialty Commands 110

Draw Rectangle Left Right Top Bottom Fill Frame
Left and Right are values from 0 to 639
Top and Bottom are values from 0 to 186
Fill and Frame are optional; if used they are values from 0 to 15

Draws a rectangle extending from (Left,Top) to (Right,Bottom). If Fill is specified the rectangle is filled with the specified
color (black if not specified). If Frame is specified the rectangle is framed with a border in the specified color (black if not
specified). TIP: If you need a different width border than the one automatically provided, just draw two rectangles—one with
the frame color, then a smaller one with the fill color.

Draw Circle Left Right Top Bottom Fill Frame
Left and Right are values from 0 to 639
Top and Bottom are values from 0 to 186
Fill and Frame are optional; if used they are values from 0 to 15

Draws a circle inside the area (Left,Top) to (Right ,Bottom). If Fill is specified the circle is filled with the specified color
(black if not specified). If Frame is specified the circle is framed with a border in the specified color (black if not specified).
TIP: If you need a different width border than the one automatically provided, just draw two circles—one with the frame
color, then a smaller one with the fill color.

Draw Icon X,Y "Icon" "FoldernameFilename"
X is a value from 0 to 639
Y is a value from 0 to 186
Icon is the name or resource number of the desired icon
FoldernameFilename is optional; if used it is the file that contains the desired resource

Draws the specified icon resource at coordinates (X,Y). NOTE: This command works only on 640 mode super-hires screen
displays.

Spectrum searches for Icon in memory (if a file was opened it is searched first). A script error occurs if Icon is not found, or
if a file was specified but could not be opened.

Advanced or Specialty Commands 111

The following icons are available within Spectrum:

SP-Express Mail SP-No Mail SP-Have Mail
SP-In Tray SP-Out Tray SP-Mail 0
SP-Mail 1 SP-Mail 2 SP-Mail 3
SP-Mail 4 SP-Mail 5 SP-Mail 6
SP-Mail 7 SP-Mail 8 SP-Mail 9
SP-Stop SP-Note SP-Checkmark
SP-Spectrum SP-Printer SP-Phone
SP-Spectrum small SP-Printer small SP-Phone small
SP-Arrow 1 Down SP-Arrow 1 Left SP-Arrow 1 Right
SP-Arrow 1 Up SP-Arrow 2 Down SP-Arrow 2 Left
SP-Arrow 2 Right SP-Arrow 2 Up

The following icons are available in System 6.0.1’s “Sys.Resource” file:

Caution Note Stop
Disk Disk Swap $$07FF0104
$$07FF0103 $$07FF0102 $$07FF0058

Example:
Set OnlineDisplay "Spectrum SHR Fast"; Display "^L"
For 0 0 9; Draw Icon 8,22 "SP-Mail $ForValue0"; Next 0
Draw Icon 1,20 "$$07FF0058"

Advanced or Specialty Commands 112

Draw Picture X,Y "Picture" "FoldernameFilename"
X is a value from 0 to 639
Y is a value from 0 to 186
Picture is the name or resource number of the desired picture
FoldernameFilename is optional; if used it is the file that contains the desired resource

Draws the specified picture resource at coordinates (X,Y). NOTE: This command works only on 640 mode super-hires screen
displays.

Spectrum searches for Picture in memory (if a file was opened it is searched first). A script error occurs if Picture is not
found, or if a file was specified but could not be opened.

Pictures should be stored in the 640 mode screen format, and care should be taken to draw them at the proper X coordinate so
the dithered colors come out correctly (usually X should be even).

Example:
Set OnlineDisplay "Spectrum SHR Fast"; Display "^L"
Draw Picture 118,35 "About Pic"

Set RTS State
State can be Off or On

Drops/raises the hardware handshaking line to tell the modem to stop sending information to Spectrum. Do not set RTS off
for very long, as incoming data may overflow the modem’s buffer.

Set Init State
State can be Off or On

When on, the modem will be initialized before dialing. Normally you should not include this command because the option is
automatically controlled (it is on at program startup and turned off after the modem is initialized).

Advanced or Specialty Commands 113

Set InitString "String"
Sets the modem initialization string.

Initialize Modem
Initializes the modem if the “Init” option is on. If the modem is initialized successfully (or if the “Init” option was off) then
the Failed flag is cleared, otherwise it is set to indicate an error (the modem is not responding).

Make ASCII VarNum

Determines the ASCII value of the first character stored in the specified variable, then sets the variable to contain that
decimal number. $VarNum is empty the Failed flag is set.

Example:
Set Var 3 "A" # the character "A"
Display "The letter $3 = ASCII "
Make ASCII 3 # converts "A" into its ASCII value (65)
Display "$3.^M^J"

Make CHAR VarNum

Determines the value stored in the specified variable. If $VarNum is a number from 0 to 255 then the variable is set to contain
the referenced character. If $VarNum is empty the Failed flag is set. If $VarNum is a number greater than 255 a script error
occurs.

Example:
Set Var 3 "65" # the ASCII value for the character "A"
Display "ASCII $3 = the letter "
Make CHAR 3 # converts "65" into its character (A)
Display "$3.^M^J"

Advanced or Specialty Commands 114

Expand Variable VarNum
Shortcut: Expand Var VarNum

Expands any replacement items within the given variable. If the expansion makes the length of variable number greater than
128, the Failed flag is set and the variable is not changed.

Example:
Display "Type '$Boot' and press Return: "; Get Line 1
Display "^M^JYou typed '$1' which expands to "
Expand Variable 1
Display "$1^M^J^J"

Clear PortBuffer
Clears the port buffer of all pending data. One use might be to eliminate unwanted “junk” characters that sometimes occurs
when you log off a system.

Example:
Store Settings; Set Screen Off; Set Buffer Off
Transmit "Bye^M"; Hangup; Clear PortBuffer
Restore Settings

Index 1

Index
This index attempts to reference all the topics you might look up. If you are looking for a particular topic and can’t find it in
this index, please let us know so we can incorporate it in the next printing of the manual.

$$ (Dollar Sign) 9

$^ (Caret) 9

$ (Replacement Item) 7

" (String Delimiter) 6

^ (Control Character) 6

(Comment Character) 7

$ # (Variable Contents) 9

$Aqua 16

$AutoSavePath 15

$Black 16

$Blue 16

$Boot 14

$BrightGreen 16

$Brown 16

$Cost 12

$CurrentX 13

$CurrentY 13

$DarkGreen 16

$Date 10

$DateTimeStamp 10

$Day 11

$DayText 11

$DisplayVersion 10

$ErrorMsg 13

$FileXferPath 15

$FKey # 10

$ForValue # 14

$FrontmostApp 16

$FullTime 11

$Gray1 16

$Gray2 16

Index 2

$Hour 11

$LastPath 16

$Length # 9

$LogonFile 15

$Matched 12

$MatchString 13

$MenuFile 15

$MenuPath 15

$Minute 12

$Month 11

$MonthText 11

$OnlineDisplay 10

$Orange 16

$PaleGreen 16

$Periwinkle 16

$PhoneEntries 14

$Pink 16

$PTimer 13

$Purple 16

$Rate 12

$Red 16

$ScriptFile 15

$ScriptPath 14

$Second 12

$SFPrefix 14

$SpectrumFile 14

$SpectrumPath 14

$StoredX 13

$StoredY 13

$Time 11

$Timer 12

$UserName 10

$Version 10

$White 16

$Year 11

$Yellow 16

A
Add 63

Advanced Commands 111

Append 91

Append CaptureFile 90

Append File 99

Append ScriptEditor 102

Index 3

Apply Format 105

Apply LFsToCRs 104

Apply LowASCII 104

Apply RemoveControls 104

Apply RemoveSpaces 104

Apply Replace 103

Apply Special 104

ASCII 115

Ask 68

AutoChat 85

AutoReceive 44

AutoResume 44

AutoSave 91

AutoSaveBuffer 91

AutoSavePath ($ Replacement Item) 15

B
Baud 36

BinaryII 45

Boot ($ Replacement Item) 14

Branching 69

Break 32

Buffer 90, 91, 92

C
Capture Buffer 90, 91, 92

Capture Buffer Control 90

Capture File 90

CarrierDetect (If) 83

CaseSensitive 109

Catalog 96, 101

Catalogs (Reading) 101

Chain 55

CHAR 115

Character Filter Settings 41

Character Input 66, 67

Character Parameter 19

CharDelay 37

ChatLine 85

Circle 112

Clear Buffer 90

Clear For 75

Clear MenuFile 33

Clear PortBuffer 116

Index 4

Clear ScriptEditor 103

Clear Scrollback 28

Clear Timer 50

Clear Variables 59

Close CaptureFile 90

Close Catalog 101

Close File 100

Close OnlineDisplay 39

Color Values ($ Replacement Items) 16

Commands 25

Comment Character 7

Compare 64

Concatenate 60

Conditional Tests 77

ConnectWait 47

Contains (If) 77

Control Character 6

Copy 94

Cost ($ Replacement Item) 12

Country 42

Create 94

CurrentX ($ Replacement Item) 13

CurrentY ($ Replacement Item) 11

D
Data Format 36

Date ($ Replacement Item) 10

DateTimeStamp ($ Replacement Item) 10

Day ($ Replacement Item) 11

DayText ($ Replacement Item) 11

DCD 38

Debug 27

Debug (If) 82

Decrement 62

Delete 92

DeleteBack 40

Delimiter 6

DFormat 36

Dial Entry 48

Dial Service 48

Dial String 47

Dialing 47

DirectAction 109

DirectDisplay 109

Index 5

Directories (Reading) 99

Display 29

DisplayFilter 41

DisplayRecord 31

DisplayVersion ($ Replacement Item) 10

Divide 63

Draw Circle 110

Draw Icon 110

Draw Line 109

Draw Rectangle 110

Draw Window 84

Duplex 36

E
Echo 36

Editor 100

Entry (Dial) 48

Equal (If) 76

Errors
$ErrorMsg Replacement Item 13
Error Control 104
On Error Goto 105
On Error GotoNext 105

Escape
On Escape Goto 104
On Escape GotoNext 104

Even (If) 81

Exists (If) 77

Exit 57

Expand Variable 114

F
Failed (If) 78

File
Append File 97
Close File 98
File Transfer 91
File Transfer Settings 43
Get File 95
Get FileInfo 93
Get FileSize 93
Open File 97
Put File 96
Read File 97
Set FileXferPath 43
Show File 94
Write File 98

Filename Parameter 21

Index 6

FileXferPath ($ Replacement Item) 15

FKey
$FKey # Replacement Item 10
Set FKey 33

Flush 85

Foldername Parameter 21

Folders (Reading) 99

For/Next Loops 74

Format 103

ForValue # ($ Replacement Item) 14

Found (If) 79

FrontmostApp ($ Replacement Item) 16

Full Duplex 36

FullTime ($ Replacement Item) 11

Fundamental Commands 29

G
Get File 95

Get FileInfo 93

Get FileSize 93

Get Key 66

Get Line 66

Get PhoneEntry 47

Get Random 62

Get VolumeFree 93

Get VolumeSize 93

Getting Input 65

Gosub 70

GosubNext 71

Goto 69

GotoNext 69

GotoXY 84

GSPrefix 87

H
Half Duplex 36

Handshake 37, 112

Hangup 49

Hardware Handshaking 37, 112

Hexadecimal Value 19

Hour ($ Replacement Item) 11

I
Icon 110

Index 7

If CarrierDetect 81

If Contains 76

If Debug 82

If Equal 76

If Even 81

If Exists 77

If Failed 78

If Found 79

If Keyboard 77

If Not CarrierDetect 82

If Not Contains 76

If Not Debug 82

If Not Equal 76

If Not Even 81

If Not Exists 78

If Not Failed 79

If Not Found 80

If Not Keyboard 77

If Not Null 80

If Not Odd 81

If Not TheManager 82

If Null 80

If Odd 81

If TheManager 82

Increment 61

Init 112

Initialize Modem 113

InitString 113

Input Key 67

Input Keyboard 67

Input Line 67

K
Keyboard (If) 77

Keyboard Input 67

KeyFilter 41

KeyLock 65

L
Label

Label Parameter 23
Set Labels 69

LastPath ($ Replacement Item) 16

Launch 56

Length # ($ Replacement Item) 9

Index 8

LFsToCRs 102

Line 109

Line Input 66, 67

LineDelay 37

Load Buffer 90

Load MenuFile 33

Load ScriptEditor 100

Load Settings 34

LogonFile ($ Replacement Item) 15

Loops 69

LowASCII 40, 102

M
Make ASCII 113

Make CHAR 113

Matched ($ Replacement Item) 12

MatchString ($ Replacement Item) 13

MenuFile
Clear MenuFile 33
Load MenuFile 33

MenuFile ($ Replacement Item) 15

MenuPath ($ Replacement Item) 15

Minute ($ Replacement Item) 12

Month ($ Replacement Item) 11

MonthText ($ Replacement Item) 11

Multiply 62

N
Next 74

Not CarrierDetect (If) 82

Not Contains (If) 76

Not Debug (If) 82

Not Equal (If) 76

Not Even (If) 81

Not Exists (If) 78

Not Failed (If) 79

Not Found (If) 80

Not Keyboard (If) 77

Not Null (If) 80

Not Odd (If) 81

Not TheManager (If) 82

Null (If) 80

O
Odd (If) 81

Index 9

Offline 39

On Error Goto 105

On Error GotoNext 105

On Escape Goto 104

On Escape GotoNext 104

On value Gosub 73

On value GosubNext 73

On value Goto 72

On value GotoNext 72

Online Display
$OnlineDisplay Replacement Item 10
Close Online Display 39
Set OnlineDisplay 39

Online Display Settings 39

Open CaptureFile 88

Open Catalog 99

Open File 97

OS Utilities 92

P
PadCR 43

Parameters 17
Character 19

Filename 21
Foldername 21
Label 23
Pathname 21
Statement 24
String 20
Value 18
VarNum 18
Volumename 21

Password
Send Password 49
Set Password 49

Pathnames 21
$AutoSavePath 15
$Boot 14
$FileXferPath 15
$FrontmostApp 16
$LastPath 16
$LogonFile 15
$MenuFile 15
$MenuPath 15
$ScriptFile 15
$ScriptPath 14
$SFPrefix 14
$SpectrumFile 14
$SpectrumPath 14

Parameters 17

Index 10

Prefix Control 87
Set GSPrefix 87
Set SFPrefix 87

Pause 53

PhoneEntries ($ Replacement Item) 14

PhoneEntry 47

Picture 112

Play Sound 51

Pop 71

Pop All 72

Port 38

Port Settings 36

PortBuffer 114

Position 60

Prefix Control 87

Print Screen 84

ProDOSX 45

Program Control 53

Prompt 43

PTimer
$PTimer Replacement Item 13
Set PTimer 44

Put File 96

Q
Quit 58

Quote 108

R
Random 62

Rate
$Rate Replacement Item 12
Set Rate 50

Read Catalog 99

Read File 97

Receive 91

Record 32

Record Catalog 94

Rectangle 110

RelaxedXfers 46

RemoveControls 102

RemoveLFs 40

RemoveSpaces 102

Rename 92

Replace 102

Replacement Item 7

Index 11

Restore ForLoops 75

Restore Settings 35

Restore Variables 59

Restore XY 83

Resume 106

Return 71

RTS 112

Run 54

S
Save Buffer 89

Save Screen 84

Save ScriptEditor 101

Save Settings 34

Screen
Print Screen 84
Save Screen 84
Set Screen 85

Screen Appearance 83

ScreenBlank 86

Script
Chain 55
Run 54

Script Control 53
Stop Script 53

Script Commands 25

Script Development 27

Script Editor 100, 101

Script Interpretation 107

Script Language Definitions 5

ScriptFile ($ Replacement Item) 15

ScriptKeys 40

ScriptPath ($ Replacement Item) 14

Scrollback 28

Second ($ Replacement Item) 12

Send 91

Send Password 49

Send ScriptEditor 101

SendAhead 45

SendLFs 37

Service (Dial) 48

Set Append 89

Set AutoChat 83

Set AutoReceive 44

Set AutoResume 44

Index 12

Set AutoSave 89

Set AutoSaveBuffer 89

Set Baud 36

Set BinaryII 45

Set Buffer 88

Set CaseSensitive 107

Set CharDelay 37

Set ChatLine 83

Set ConnectWait 47

Set Country 42

Set DCD 38

Set Debug 27

Set DeleteBack 40

Set DFormat 36

Set DisplayFilter 41

Set Duplex 36

Set Echo 36

Set FileXferPath 43

Set FKey 33

Set Flush 85

Set GSPrefix 87

Set Handshake 37

Set Init 112

Set InitString 113

Set KeyFilter 41

Set KeyLock 65

Set Labels 69

Set LineDelay 37

Set LowASCII 40

Set OnlineDisplay 39

Set PadCR 43

Set Password 49

Set Port 38

Set ProDOSX 45

Set Prompt 43

Set PTimer 44

Set Quote 108

Set Rate 50

Set RelaxedXfers 46

Set RemoveLFs 40

Set RTS 112

Set Screen 85

Set ScreenBlank 86

Set ScriptKeys 40

Index 13

Set SendAhead 45

Set SendLFs 37

Set SFPrefix 87

Set ShowControls 28

Set SmartPaste 35

Set Sound 40

Set StatLine 83

Set Timeout 65

Set Timer 50

Set Token 108

Set Turbo 46

Set ULTextShow 44

Set Variable 59

Set XonXoff 37

Set ZErrors 46

Settings 34
Character Filter 41
File Transfer 43
Load Settings 34
Online Display 39
Port 36
Restore Settings 35
Save Settings 34
Store Settings 34

SFPrefix
$SFPrefix Replacement Item 14
Set SFPrefix 87

Show Catalog 94

Show Error 106

Show File 94

ShowControls 28

ShowRecord Catalog 94

Sound 40
Play Sound 51
SP.Snds.Aux 52
SP.Snds.Main 51
SP.Snds.Num 51

Special 102

Specially-Treated Characters 6

Specialty Commands 109

SpectrumFile ($ Replacement Item) 14

SpectrumPath ($ Replacement Item) 14

Statement Parameter 24

StatLine 83

Stop Script 53

Store ForLoops 75

Store Settings 34

Index 14

Store Variables 59

Store XY 83

StoredX ($ Replacement Item) 13

StoredY ($ Replacement Item) 13

String
Concatenate 60
Dial String 47
Position 60
String Delimiter 6
String Parameter 20
Substring 61
WaitFor String 66

Substring 61

Subtract 62

Swap 64

T
TheManager (If) 82

Time
$Time Replacement Item 11
WaitFor Time 53

Timeout
Set Timeout 65

Timer
$Timer Replacement Item 12
Clear Timer 50
Set Timer 50

Token 108

Transferring Files 91

Transmit 32

Turbo 46

U
ULTextShow 44

UserName ($ Replacement Item) 10

V
Value Parameter 18

Variables 59
Add 62
Clear Variables 59
Compare 63
Decrement 62
Divide 63
Increment 61
Multiply 62
Restore Variables 59
Set Variable 59

Index 15

Store Variables 59
Subtract 62
Swap 64

VarNum Parameter 18

Version ($ Replacement Item) 10

VolumeFree 93

Volumename Parameter 21

VolumeSize 93

W
WaitFor Keyboard 65

WaitFor String 66

WaitFor Time 53

Window 84

Write Buffer 90

Write File 98

X
Xmit 32

XonXoff 37

XY 84

Y
Year ($ Replacement Item) 11

Z
ZErrors 46

