
 Apple® IIGS Undo Manager
 Reference Manual

Page 2

Dedicated to the memories of Joe Kohn 1947-2010
and Ryan Suenega 1967-2011

Undo Manager is Freeware and Copyright © 2018 Ewen Wannop

Undo Manager and its supporting documentation may not be printed,
copied, or distributed for profit.

Distributing and/or archiving is restricted while in an electronic form.
Any “free” distribution must be given permission by Ewen Wannop

in advance -- please contact via email by sending mail to:

spectrumdaddy@speccie.uk

There is no guarantee that the right to redistribute this material
will be granted. The contents of this document may not be

reprinted in part or in whole.

My thanks go to Eric Shepherd for some excellent suggestions, and especially
to Chris Vavruska, for his extensive help and many suggestions,

as well as helping me with the C and Pascal documentation, and also for
providing me with C, Modula-2, GSoft, and Pascal examples of the

Undo.Tester.

mailto:spectrumdaddy@speccie.uk
mailto:spectrumdaddy@speccie.uk

Page 3

Introduction! 4

Using the Undo Manager
! Requirements 5
! Programming 6
! Using the Calls 7

The Tool Calls
 UMBootInit ! 10
 UMStartup ! 10
 UMShutDown ! 11
 UMVersion ! 11
 UMReset ! 12
 UMStatus ! 12
 UMLogIn ! 13
 UMLogOut ! 14
 UMKeyAction ! 15
 UMMenuAction ! 16
 UMSaveClip ! 17
! UMClearClips ! 18
 UMClear ! 19
! UMClearWindowClips ! 20
 UMLogOutAll ! 21
 UMClipStatus ! 22
 UMKeyAction2 ! 23
 UMPushUndoObject ! 24
 UMPopUndoObject ! 25

Appendix

 Coding Examples 26
 Undo Manager DataTable 28
! Undo Object Data Calls 32
 Undo Manager Error Codes 34
 Version History 35
 Extras 36

Contents

Page 4

Undo Manager

When I first started writing Spectrum™ back in 1986, I needed to have a text editor, and
with no TextEdit Tool available, I had to start writing my own editor. I had not got very
far, before I was delighted to see in an System update, that a nice new TextEdit Tool had
been added that instantly solved my problem. Over the years, I have used the TextEdit
tool extensively, and without it, many of the Spectrum™ scripting functions would not be
possible.

Powerful as TextEdit is, if you check the many flags and settings in the documentation, it
is clear that TextEdit was never fully implemented as was originally intended. Most of
these omissions are of minor inconvenience, but anyone who is used to editing text on
other computer platforms, will find some glaring omissions from the usual editing trio of
Cut, Copy and Paste. There are no active Undo, Clear, or Select All functions, despite
Undo and Clear appearing on the standard Edit menus.

Many programmer’s like myself, will probably have activated ‘Select All’ from within their
own code, but ‘Undo’ and ‘Clear’, are usually left hanging in mid air doing nothing.

If like me, you have typed or edited large sections of text in a TextEdit or LineEdit
Control, then accidentally deleted some of the text, you will have been frustrated when
selecting ‘Undo’ to restore the mistake, nothing happened.

The Undo Manager resolves this dilemma for you, and by installing the Undo Manager,
and adding a few simple commands to your application code, along with adding Redo,
Select All, and Clear to the standard five items of the Edit menu, the Undo, Redo, Clear,
and Select All menu items will all now magically become active.

Undo Manager is Freeware and Copyright © 2018-19 Ewen Wannop

Introduction

Introduction to the Undo Manager

Page 5

Requirements

The Undo Manager requires some Tools to be active, though in most
applications, these will already have been started. If not, make sure they are
started from your application before calling the Undo Manager:

Resource Manager, File Manager, Menu Manager, Control Manager, Event Manager,
Memory Manager, Integer Math Tool Set, Miscellaneous Tool Set, Scrap Manager,
LineEdit Tool Set, TextEdit Tool Set, WindowMgr, and Undo Manager

The Undo Manager itself should be started after the application has started the
above Tools, and any other Tool Sets that the application requires.

To use the Undo Manager, an application only needs to have
a standard Edit Menu with the Undo, Redo, Cut, Copy, Paste,
Clear, and Select All, menu items present. After Login to the
Undo Manager, when a window is then opened, and uses the
doModalWindow command to handle its events, by using two
simple Tool calls, the Undo Manager will handle those seven
Edit Menu items for any LineEdit, TextEdit or Picture
controls within that window.

Up to eight individual Logins, from multiple Applications or
Windows, can use the Undo Manager at any one time. Up to
thirty-two LineEdit, TextEdit, Picture controls from across
those eight Logins are individually controlled, with up to
thirty-two Undo and Redo levels for each control or Object.

A simple application, ‘Undo.Tester’, and its source, are
included, to show how the Undo Manager works in practice.

‘Undo.Tester’ contains two basic word processors that you might find useful for
simple text processing or testing.

In Use

Using the Undo Manager

Page 6

Programming

How the Undo Manager works

To activate the Undo command for any LineEdit, TextEdit, or Picture controls within
your application, the controls in most cases should be within windows handled by the
doModalWindow call. This will probably be the case for most modern applications. On
Login to the Undo Manager, the Manager will temporarily change the seven Edit Menu
item IDs from their defaults, to ones you have supplied. This means they are isolated
from the normal Edit keypresses handled by the Scrap Manager, and then from within
the doModalWindow loop, the Undo Manager will trap and handle those keypresses and
Menu selections for the seven Menu items, as if the System had handled them.

The Undo Manager maintains its own private clipboard for each of your LineEdit,
TextEdit, or Picture controls. Before text or a picture is changed by OA-X, Clear, Delete,
or OA-V, a private Clip will be kept of the entire text from that control, and in the case of
a TextEdit control, any styles that may have been used. The Undo menu item will then be
activated. When the OA-Z key is pressed, or you select the Undo menu item, the Undo
Manager will then restore the text or picture to how it was before those Edit keys were
pressed, and any selection that had been active will be restored. If you have pressed OA-
Z, then the Redo menu item will become active, and by pressing OA-Y, or selecting the
Redo menu item, it will Redo the last Undo action. Up to thirty-two levels of Undo and
Redo can be stored for each control.

If you have a standard speed IIgs, you may find a small slowdown when the OA-Z, OA-Y,
OA-X, Clear, Delete, or OA-V keys are pressed, especially if you are working with a very
large amount of text in a TextEdit control. For shorter amounts of text, in either a
LineEdit or TextEdit control, you should not see any slowdown at all.

If the "No editing allowed" or "User cannot select text" flags are set for a TextEdit
control, the related Edit menu items will be dimmed.

The private Clips are normally kept within memory, but as TextEdit controls can hold
very large quantities of text, if a TextEdit “clip” or ObjectHandle is larger than 4K, it will
be saved as a temporary file, in Teach format for text, to the “Undo.Data” folder in the
System folder, rather than be kept in memory. If there is insufficient space on the hard
disk to do this, the clip will not be saved, and the Undo command will not be activated.

Only thirty-two levels of Undo and Redo are kept on the Clips stack, so the Tool can only
restore the last thirty-two changes that were made. As new clips are saved, older ones will
be rolled off that stack. Please refer to the “Using the Calls” section for more detail.

Page 7

Using the Calls
Please refer to the section on Coding Examples for a more detailed explanation of how
the calls are integrated into your code.

Basic Strategy:

These are the sequence of calls you will need to use the Undo Manager:

At application start:

!! LoadOneTool! ;! Load the Undo Manger into memory

!! UMStartUp! ;! Start the Undo Manager

!! UMLogIn! ;! LogIn to the Undo Manager

In a doModalWindow call Loop:

!! UMKeyAction! ;! Called from within the doModalWindow EventHook

!! UMMenuAction! ;! Called from within the main doModalWindow loop

At application Quit:

!! UMLogOut! ;! LogOut from the Undo Manager

!! UMShutDown! ;! Shut the Undo Manager down

!! UnloadOneTool! ;! Unload the Undo Manager from memory

The advantages of this basic strategy is that you can hold saved Clips for up to thirty-two
different controls across your application. It is important however that all the windows
containing those controls are kept open, as the ControlHandle value may change if
windows are closed, and then re-opened later. This would mean that saved Clips could no
longer be matched up to the same control if its window was re-opened later on.

To avoid saved Clips from becoming orphaned with this strategy, call
UMClearWindowClips just before a window is closed.

Optional calls (Refer to each call for more details of what the calls do):

!! UMVersion! ;! Returns the version number of the Undo Manager

!! UMStatus! ;! Returns the Status of the Undo Manager

!! UMSaveClip! ;! Manually saves a Clip from the current active control

!! UMClearClips! ;! Clears all the Clips for the current active control

!! UMClear! ;! Clears all the Clips for the passed refID

!! UMClearWindowClips!; Clears all the clips for the front window

!! UMLogOutAll! ;! LogOut, and clears Clips, for all the applications
!! ! ! or windows
!! UMClipStatus! ; Returns data about the Clips stack for a control

!! UMKeyAction2! ; Alternative call to UMKeyAction

!! UMPushUndoObject! ; Saves a supplied Object data Handle to the Undo stack

!! UMPopUndoObject! ; Retrieves an Object data Handle from the Undo stack

Page 8

Alternate Strategy:

This alternate strategy can be used:

At application start:

!! LoadOneTool! ;! Load the Undo Manager into memory

!! UMStartUp! ;! Start the Manager Tool

After each window has been opened:

!! UMLogIn! ;! LogIn to the Manager Tool

In a doModalWindow call Loop:

!! UMKeyAction! ;! Called from within the doModalWindow EventHook

!! UMMenuAction! ;! Called from within the main doModalWindow loop

Before each window is closed:

!! UMLogOut! ;! LogOut from the Undo Manager

At application Quit:

!! UMShutDown! ;! Shut the Undo Manager down

!! UnloadOneTool! ;! Unload the Undo Manager from memory

This strategy makes sure that all saved Clips are cleared whenever a window is closed. If
your application has a large number of controls, this will ease memory use from the space
required to save a multitude of Clips.

To sum up:

Up to thirty-two Clips can be saved for each of thirty-two active controls, or data Object.
If more than thirty-two Clips are saved, older Clips will be lost as they are rolled off from
the bottom of the Clips stack for that control.

You can only call UMLogIn eight times in total, with up to thirty-two active controls. You
should leave at least one UMLogIn free for any NDA that may also wish to call the Tool.

If you use UMLogIn at the start of your application, and UMLogOut at Quit, you need to
call either UMClear or UMClearWindowClips before each doModalWindow window is
closed. The saved Clips are control specific, so to minimise memory use, and to clear
memory, one of these calls needs to be made when the clips are no longer available.

Note: Only the picture content from a Picture control is cleared or replaced. The control
itself will not change. If the picture being changed is of a different size to the original
picture, it will be resized to fit the control. This may produce unexpected results.

Page 9

Passed Parameters:

A refID needs to be passed for many of the calls. This can be either the application
UserID, or a new ID created using GetNewID. The refID is used to identify which
application, NDA or window has logged in and is making the call, amongst the eight
possible UMLogIn calls. It is permissible for an application to make multiple calls to
UMLogIn using unique refIDs, thus being able to handle multiple windows as if they
were from different applications. This has the advantage of being able to use different
menus for each call. If you do this, just make sure every UMLogIn is balanced with an
UMLogOut call.

A pointer to a DataTable in your application is passed at UMLogIn. The DataTable is
constructed thus:

DataTable entry
 dc! i4'EventRecord'! long! Pointer to your EventRecord
 dc! i'$01FA,$00FA'! word! New/Old Undo Menu Item ID = OA-Z
 dc! i'$01FB,$00FB'! word! New/Old Cut Menu Item ID = OA-X
 dc! i'$01FC,$00FC'! word! New/Old Copy Menu Item ID = OA-C
 dc! i'$01FD,$00FD'! word! New/Old Paste Menu Item ID = OA-V
 dc! i'$01FE,$00FE'! word! New/Old Clear Menu Item ID
 dc! i'$0100,$0100'! word! New/Old Select All Menu Item ID = OA-A
 dc! i'$0101,$0101'! word! New/Old Rdedo Menu Item ID = OA-Y

The EventRecord pointer must point to an extended EventRecord in your application
code (Refer to Coding Samples for more detail).

The seven MenuIDs follow in pairs. The first ID of each is the new MenuID that the
Undo Manager will use to replace the existing MenuID or current MenuID that your
application has defined. The second ID is the existing or default ID defined in your
application. If you define in your code the five Edit MenuIDs as custom MenuIDs, that
are outside the $FA to $FE range, the two values can be of the same value if you wish.
Just make sure that the basic five Edit Menu IDs of $FA to $FE are not used for the new
MenuIDs that the Undo Manager will allocate. This is to make sure that the Scrap
Manager will not trap those keys before the Undo Manager can do its work.

If you use a value of $0000 for both MenuIDs, then that Menu item will be ignored at
UMLogIn. This allows you to use custom menus, that only have those calls that you wish
to make available.

As you will see from the Undo.Tester application, the Undo Manager can support not
only the usual five Edit Menu items, but Select All and Redo as well. Undo and Redo
work together, so Redo is only available after an Undo call has been made.

Page 10

$0184	 UMBootInit
! Initialises the Undo Manager; called only by the Tool Locator.

! Warning
! An Application must never make this call.

Parameters! The stack is not affected by this call. There are no input or output parameters.

Errors! None

C	 Call must not be made by an application.

$0284	 UMStartUp
! Starts up the Undo Manager for use by an application.

! Important
! Your Application must make this call before it makes any other Undo Manager calls.

Parameters! The stack is not affected by this call. There are no input or output parameters.

Errors! None

C	 extern pascal void UMStartUp ();

Note: This call must be made before any other Undo Manager calls are made, and
must be balanced with a call to UMShutDown at application Quit.

Page 11

$0384	 UMShutDown
! Shuts down the Undo Manager.

! Important
! If your Application has started up the Undo Manager, the application must make
! this call before it quits.

Parameters! The stack is not affected by this call. There are no input or output parameters.

Errors! None

C	 extern pascal void UMShutDown ();

Note: This call must be made at application Quit, and balances the UMStartup call.

$0484	 UMVersion
! Returns the version number of the Undo Manager.

Parameters

Stack before call

Stack after call

Errors! None

C	 extern pascal Word UMVersion ();

previous contents
wordspace Word—Space for result

←!SP

previous contents
versionInfo Word—Version number of Undo Manager

←!SP

Page 12

$0584	 UMReset
! Resets the Undo Manager; called only when the system is reset.

! Warning
! An Application must never make this call.

Parameters! The stack is not affected by this call. There are no input or output parameters.

Errors! None

C	 Call must not be made by an application.

$0684	 UMStatus
! Indicates whether the Undo Manager is active.
! UMStatus returns TRUE if UMStartup has been called and UMShutDown
! has not been called. The routine returns FALSE if UMStartUp has not been
! called at all or if UMShutDown has been called since the last time UMStartUp
! was called.

Parameters

Stack before call

Stack after call

Errors! None

C	 extern pascal Boolean UMStatus ();

previous contents
wordspace Word—Space for result

←!SP

previous contents
activeFlag Word—BOOLEAN; TRUE if Undo Manager active, FALSE if inactive

←!SP

Page 13

$0984	 UMLogIn
! Logs into the Manager either by an Application, NDA, or doModalWindow loop.

Parameters

Stack before call

Stack after call

Errors! $8402! umAlreadyLoggedIn! Window closed
! $840B! umToolsNotStarted Required Tools not started (See Page 5)

C	 extern pascal void UMLogIn (refID,DataTable);
! Word! RefID;
! Pointer! DataTable;

Note: Every application, must make this call before any Undo Manager action calls
are made, and must be balanced with a call to UMLogOut when the window is
closed or the application Quits.The call uses the information from the ‘DataTable’
Pointer, to retrieve a Pointer to the applications ‘EventRecord’ table, and to the
original and replacement menu IDs for the six Edit Menu items. Please refer to
‘Coding Examples’ for more information.
The application can either make this call this once at application Start, balanced with
an UMLogOut at Quit, or before each doModalWindow loop, with a balanced
UMLogOut when that window closes.
The refID will normally be the application User ID, but the application may make
this call more than once, as long as it uses a unique refID each time. This allows you
to use unique Edit menu IDs for each doModalWindow if you wish.
Only 8 applications or windows may call UMLogIn at any one time, with up to 32
controls. You should not use more than around 7 UMLogIn calls from within your
application, and no more than 30 controls at once, to allow for any NDAs that may
also wish to use the Undo Manager. Using UMLogIn around each doModalWindow,
will allow for more controls to be handled overall within your application.

previous contents

refID

DataTable

 Word—Application User ID

! Long—Pointer to DataTable

←!SP

previous contents

←!SP

Page 14

$0A84	 UMLogOut
! Logs out of the Manager either by an Application, NDA, or doModalWindow loop.

Parameters

Stack before call

Stack after call

Errors! $8403 ! umNotLoggedIn! Not logged in

C	 extern pascal void UMLogOut (refID);

! Word! RefID

Note: Every application, must make this call either when the application Quits, or
when a doModalWindow is closed. It must always be balanced with an UMLogIn
call.

Any saved clips for this refID will be cleared when this call is made, and the seven
Edit Menu items will be disabled.

If you need to keep Clips across multiple windows being opened and closed while
other windows are still open, then only call UMLogIn at the Start of the application,
and call UMLogOut at application Quit.

previous contents

←!SP

previous contents
refID Word—Application User ID

←!SP

Page 15

$0B84	 UMKeyAction
! Traps keypresses from the doModalWindow EventHook.

Parameters

Stack before call

Stack after call

Errors! $8403 ! umNotLoggedIn! Not logged in
! $8404! umNoActiveControl! No active LineEdit or TextEdit control found
! $8406! umClipBlockFull! Too many clips already saved
! $8407! umLowMemory! Not enough memory to save Clip
! $8409! umNotEnoughDiskSpace!Not enough disk space to store Clip
! GS/OS Errors returned unchanged

C	 extern pascal void UMKeyAction (refID);

! Word! RefID

Note: This call must be made from within the EventHook for a doModalWindow. All
keypresses must be passed through to the Manager, but the Undo Manager will only
trap the Delete key, and OA-Delete key presses.

The call filters and only acts on those two keypresses. Usually this will be the only
call made within the EventHook code for a specific doModalWindow, but it is
permissible for you to do your own filtering if you wish. Just make sure that as a
minimum, you allow Mouse down, the ASCII keys, the Delete key, and the OA-
Delete key actions to be passed through to the UMKeyAction call.

A Clip for the currently active control will be saved before the normal Scrap and
Clipboard action are made for the Delete keys. The Undo menu will then be enabled.

To allow the Manager to work correctly, you must use values of either $003F, $002F,
$003D, or $002D for the ‘flags’ value in the doModalWindow call.

previous contents

←!SP

previous contents
refID Word—Application User ID

←!SP

Page 16

$0C84	 UMMenuAction
! Traps Edit Menu actions from the doModalWindow loop.

Parameters

Stack before call

Stack after call

Errors! $8403 ! umNotLoggedIn! Not logged in
! $8404! umNoActiveControl! No active LineEdit or TextEdit control found
! $8405! umNoSavedClip! No Undo Clip was found
! $8406! umClipBlockFull! Too many clips already saved
! $8407! umLowMemory! Not enough memory to save Clip
! $8409! umNotEnoughDiskSpace!Not enough disk space to store Clip
! GS/OS Errors returned unchanged

C	 extern pascal void UMMenuAction (refID);

! Word! RefID

Note: This call is made from within the main doModalWindow loop. It will only
handle the seven Edit Menu keypresses, of Undo, Redo, Cut, Copy, Paste, Clear and
Select All.

The routine filters and only acts on those seven keypresses. Usually you will append
this call to the end of your main doModalWindow loop, so you can first trap any
other Menu items, or clicks on buttons or other controls, before this call is made.

It is permissible to first apply filtering yourself, as long as you allow those seven
menu items through to the UMMenuAction call. Remember that the seven Edit
Menu item IDs will have been changed from their default values to those supplied in
the DataTable pointed to at UMLogin.

Refer to the Coding Examples for an example of how this call is used.

previous contents

←!SP

previous contents
refID Word—Application User ID

←!SP

Page 17

$0D84	 UMSaveClip
! Optionally saves a Clip for the currently active control.

Parameters

Stack before call

Stack after call

Errors! $8403 ! umNotLoggedIn! Not logged in
! $8404! umNoActiveControl! No active LineEdit or TextEdit control found
! $8406! umClipBlockFull! Too many clips already saved
! $8407! umLowMemory! Not enough memory to save Clip
! $8409! umNotEnoughDiskSpace!Not enough disk space to store Clip
! GS/OS Errors returned unchanged

C	 extern pascal void UMSaveClip (refID);

! Word! RefID

Note: This call can be made at any time after UMLogIn and before UMLogOut. It
will save a Clip to the Undo stack for the currently active control of the contents of
that control without clearing or otherwise changing the text.

Remember that each control can only have 32 levels of Clip saved before the first
Clip will be rolled off from the bottom of the stack to make way for the new Clip.

You might for instance call UMSaveClip before any font changes you make in a
TextEdit control. The Undo.Tester actually uses this call in that way, so you can
backtrack on any font changes that you have made.

Refer to the Coding Examples for an example of how this call is used.

previous contents

←!SP

previous contents
refID Word—Application User ID

←!SP

Page 18

$0E84	 UMClearClips
! Optionally clears any Clips for the currently active control.

Parameters

Stack before call

Stack after call

Errors! $8403 ! umNotLoggedIn! Not logged in
! GS/OS Errors returned unchanged

C	 extern pascal void UMClearClips (refID);

! Word! RefID

Note: This call clears all the saved Clips for the currently active control.

Refer to the Coding Examples for an example of how this call is used.

previous contents

←!SP

previous contents
refID Word—Application User ID

←!SP

Page 19

$0F84	 UMClear
! Optionally clears all the saved clips for the User ID.

Parameters

Stack before call

Stack after call

Errors! $8403 ! umNotLoggedIn! Not logged in
! GS/OS Errors returned unchanged

C	 extern pascal void UMClear (refID);

! Word! RefID

Note: This call clears any saved Clips for all the controls associated with the refID.

Refer to the Coding Examples for an example of how this call is used.

previous contents

←!SP

previous contents
refID Word—Application User ID

←!SP

Page 20

$1084	 UMClearWindowClips
! Optionally clears all the Clips for controls in the front Window.

Parameters

Stack before call

Stack after call

Errors! $8408! umNoWindowFound!! No front window or controls found
! GS/OS Errors returned unchanged

C	 extern pascal void UMClearWindow (refID);

! Word! RefID

Note: This call clears all the saved Clips for every LineEdit, TextEdit, and Picture
control within the currently active front window, and then Disables the seven Edit
Menu Items.

Usually it will be called before you close the front active window.

Note: If you use UMLogIn and UMLogOut at application Start and Quit, you need
to call UMClearWindowClips before a controlled window is closed. This will make
sure that any pending Clips for controls in that window that will no longer be
available after that window is closed will be cleared from memory.

It does not clear saved Clips for any other windows or data Objects related to that
refID.

Refer to the Coding Examples for an example of how this call is used.

previous contents

←!SP

previous contents
refID Word—Application User ID

←!SP

Page 21

$1184	 UMLogOutAll
! Optionally Logs out of all User IDs, and clears all their Clips.

Parameters! The stack is not affected by this call. There are no input or output parameters.

Errors! GS/OS Errors returned unchanged

C	 extern pascal void UMLogOutAll ();

Note: This call clears all the saved Clips for every refID used to call UMLogIn, and
then calls UMLogOut for all those refIDs

Note: Other applications or NDAs may well have also called UMLogIn, so this call
will have logged them out as well. Use with care.

Refer to the Coding Examples for an example of how this call is used.

Page 22

$1284	 UMClipStatus
! Returns information about the Clips stack for a control.

Parameters

Stack before call

Stack after call

Errors! $8404! umNoActiveControl! No active LineEdit or TextEdit control found

C	 extern pascal void UMClipStatus (refID, UndoStatusBuffer,
! ! ! ! ! ! ! ! ! ControlHandle);

! Word! RefID;
! Pointer! UndoStatusBuffer;
! Long! ControlHandle;

UndoStatusBuffer
NumberLoggedInApps ! ! word! Total 0-16
NumberControlsThisApp ! word! Total 0-64
NumberClipsThisControl ! word! Stack size 0-10
StackPointerThisControl ! word! Undo Stack Pointer 0-10
LastKeypressThisControl ! word! $17F, $7F, $100, OA-Z, OA-Y,
! ! ! ! ! ! OA-X, OA-C, OA-V, or OA-A

Allows an application to find out how many applications are currently logged in,
how many Clips have been saved for the control or ObjectType, as well as the
current state of the Clips stack pointer for the control.

Refer to the Alternate Strategy section of the Coding Examples for further details on
this call.

previous contents

refID

UndoStatusBuffer

ControlHandle

 Word— Application User ID

 Long—Pointer to a Buffer to hold returned data

 Long—Handle of control to return Clips data from

←!SP

previous contents

←!SP

Page 23

$1384	 UMKeyAction2
! Traps key and menu item presses from the program loop.

Parameters

Stack before call

Stack after call

Errors! $8403 ! umNotLoggedIn! Not logged in
! $8404! umNoActiveControl! No active LineEdit or TextEdit control found
! $8406! umClipBlockFull! Too many clips already saved
! $8407! umLowMemory! Not enough memory to save Clip
! $8409! umNotEnoughDiskSpace!Not enough disk space to store Clip
! GS/OS Errors returned unchanged

C	 extern pascal void UMKeyAction2 (refID,eventMask);

! Word! RefID;
! Word! eventMask;

! EventMask:
! ! Bit 2 & Bit 1 = Mouse events
! ! Bit 5 & Bit 3 = Key events
! ! Bit 14 = Delete key
! ! Bit 15 = OA-Delete key

Note: This is an alternative call to UMKeyAction. The events are intercepted without
the need for a menu to be active, so for this call to work correctly, the Edit menu
items must be OA-Z, OA-Y, OA-X, OA-C, OA-V and OA-A. As ’Clear’ does not
normally have a key equivalent, it is not supported.

Refer to the Coding Examples for further details on this call.

Note: This call was introduced in Undo Manager v1.0.1, so if you rely on its
presence, check for this minimum version of the tool at your application startup.

previous contents

←!SP

previous contents
refID

eventMask

 Word—Application User ID

! Word—key and mouse eventMask

←!SP

Page 24

$1484	 UMPushUndoObject
! Pushes a supplied Object Handle to the Undo Object stack.

Parameters

Stack before call

Stack after call

Errors! $8403 ! umNotLoggedIn! Not logged in
! $8406! umClipBlockFull! Too many clips already saved
! $8407! umLowMemory! Not enough memory to save Clip
! $8409! umNotEnoughDiskSpace!Not enough disk space to store Clip
! $840A! umObjectHandleInvalid! objectHandle is invalid
! GS/OS Errors returned unchanged

C	 extern pascal void UMPushUndoObject (refID, objectType,
! ! ! ! ! ! ! ! ! objectHandle);

! Word! RefID; objectType;
! Long! objectHandle;

This call allows an application to temporarily save data from a supplied Handle to a
private Object clips stack. This is balanced by the UMPopUndoObject call.

Note: The only other calls that the private Object clips stack is affected by are
UMClear, UMClipStatus, and UMLogout.

Refer to the section on "Undo Object Data Calls" for further details on this call.

Note: This call was introduced in Undo Manage v1.0.2, so if you rely on its presence,
it is advisable to check for a minimum of this version at your application startup.

previous contents

refID

ObjectType

ObjectHandle

 Word— Application User ID

 Word—Unique Object Type supplied by calling application

! Long—Handle of data to save to the Object stack

←!SP

previous contents

←!SP

Page 25

$1584	 UMPopUndoObject
! Pops an Object Handle from the Undo stack

Parameters

Stack before call

Stack after call

Errors! $8403 ! umNotLoggedIn! Not logged in
! $8405! umNoSavedClip! No Undo Clip was found
! GS/OS Errors returned unchanged

C	 extern pascal long UMPopUndoObject (refID, ObjectType,
! ! ! ! ! ! ! ! ! popObjectFlags);
! Word! RefID; ObjectType; popObjectFlags
! Long! ObjectHandle;

popObjectFlags

! Bit 15 !0 = Retrieves entry from top of stack
! Bit 15!1 = Retrieves entry indicated by Bits 0-6 from stack
! Bit 14!0 = Clears entry and all clips from this entry and above
! Bit 14!1 = Don't clear any clips
! Bits 0-6 = (Value = 1-32) Recovers target clip (Bit 15 must be set)

This call allows an application to pop or recover, saved data from the private Object
clips stack to a Handle. This must be balanced by the UMPushUndoObject call.

Refer to the section on "Undo Object Data Calls" for further details on this call.

Note: This call was introduced in Undo Manage v1.0.2, so if you rely on its presence,
it is advisable to check for a minimum of this version at your application startup.

previous contents

longspace

refID

ObjectType

popObjectFlags

 Long— space for result

 Word— Application User ID

 Word— Unique Object Type supplied by calling application

 Word—Flags to control how the Pop action behaves

←!SP

previous contents

ObjectHandle

←!SP

Page 26

Coding Examples
These are ORCA/M examples of how to use the Undo Manager calls. Refer to the ORCA/
M, C and Pascal source files for Undo.Tester as an example of how to use the calls in
practice:

*** Main code

* At application startup:

 pea! $0084 ! ; Load the Undo Manager
 pea! $0100
 _LoadOneTool
 _UMStartUp

* Either at application startup, or bracketed around doModalWindows:

 PushWord refID! ; User ID or custom ID
 PushLong #DataTable! ; Pointer to required DataTable (See below)
 _UMLogIn! ; Logs in to the Undo Manager

* Open a Window, setup any LineEdit or TextEdit controls, then:

doModalLoop anop

 pha
 pha
 PushLong #EventRecord!; The EventRecord pointed to in the DataTable
 pea! 0
 pea! 0
 lda! #^EventHook! ; The EventHook (See below)
 ora! #$8000
 pha
 lda! #EventHook
 pha
 pea! 0! ; Beep procedure
 pea! 0
 pea! $003F! ; or $002F, $003D, or $002D (flags)
 _doModalWindow
 pla
 plx

* In the doModalLoop, your code can first check for any control buttons etc.,
then sends the seven OA menu key presses to the Undo Manager for processing:

 pea! 0! ; Clear the menu Hilite
 lda! TaskData+2! ; From your EventRecord
 pha
 _HiliteMenu

 PushWord refID! ; Handles the six Menu Items
 _UMMenuAction

 bra! doModalLoop! ; Return to the start of the main loop

Page 27

* Called when a doModalWindow is closed or at application Quit:

 PushWord refID
 _UMLogOut! ; Log out from the Undo Manager

* At Quit, unload the Tool from memory:

 _UMShutDown
 pea! $0084! ; Unload the Undo Manager

 _UnloadOneTool

Note: The UMLogIn and UMLogOut calls must be balanced, but may be called up to
16 times within one application, as long as a unique refID is used each time.

*** The EventHook routine example:

EventHook anop!! ; Sends all keypresses to the Undo Manager

OrigD equ! 1
OrigB equ! OrigD+2
RTLAdr equ! OrigB+1
Ptr equ! RTLAdr+3

 phd
 phb
 phk
 plb

 PushWord refID! ; processes keypresses, and traps the Delete Keys
 _UMKeyAction

 plb
 pld

 lda! 1,s
 sta! 5,s
 lda! 2,s
 sta! 6,s
 tsc
 clc
 adc! #4
 tcs
 rtl

Note: This call is referenced from the doModalWindow call, and processes mouse
down and key events.

Note: This call can be replaced with UMKeyAction2, when UMMenuAction will no
longer be required. Refer to the entry for UMKeyAction2 for more details.

Page 28

*** The Passed Pointers and DataTables

* Used to LogIn to the Manager, and then for most of the subsequent calls:

 refID!! ; Either the UserID or a unique ID

* At UMLogIn, a Pointer is passed to a DataTable holding a pointer to the
EventRecord in your code, this is followed by a Table of Unique menu IDs, and
original menu IDs, that will replace the five standard Edit Menu IDs. At
UMLogOut, the original or old menu IDs will be restored. The actual menu IDs
will vary depending on your application's requirements:

DataTable entry
 dc! i4'EventRecord'! long! Pointer to your EventRecord
 dc! i'$01FA,$00FA'! word! New/Old Undo Menu Item ID = OA-Z
 dc! i'$01FB,$00FB'! word! New/Old Cut Menu Item ID = OA-X
 dc! i'$01FC,$00FC'! word! New/Old Copy Menu Item ID = OA-C
 dc! i'$01FD,$00FD'! word! New/Old Paste Menu Item ID = OA-V
 dc! i'$01FE,$00FE'! word! New/Old Clear Menu Item ID
 dc! i'$0100,$0100'! word! New/Old Select All Menu Item ID = OA-A
 dc! i'$0101,$0101'! word! New/Old Redo Menu Item ID = OA-Y

* The Undo Manager changes the seven Edit Menu IDs, so it can trap the
keypresses before the System has a chance to act on them itself. You simply
list IDs that are not otherwise being used in your application as the ‘New’
IDs, and then following that value with the existing ID, which as shown here,
will usually be the default ID for that Menu Item.

 Both IDs may be the same, but the New IDs must be unique, and not within the
 standard $FA to $FE range.

 Use a value of $0000 for both IDs, if you wish the Undo Manager to ignore that
 Menu Item.

* A Pointer to an extended EventRecord is passed at the head of the DataTable:
!
! EventRecord anop
! EventWhat ds 2
! EventMessage ds 4
! EventWhen ds 4
! EventWhere ds 4
! EventModifiers ds 2
! TaskData ds 4
! TaskMask dc i4'$001fffef'
! LastClickTick ds 4
! ClickCount ds 2
! TaskData2 ds 4
! TaskData3 ds 4
! TaskData4 ds 4
! LastClickPoint ds 4

Page 29

* When controlling Picture controls, bit 14 fCtlCanBeTarget, of moreFlags for
the Picture control must be set. This allows the control to be made a target,
and so can be seen by the Undo Manager calls.

As Picture controls do not normally respond to keyboard events to activate the
control, you may need to use further code in the doModalWindow EventHook to
activate the control on a mouse click before the Undo Manager call:

EventHook anop!! ! ; Sends all keypresses to the Undo Manager

OrigD equ! 1
OrigB equ! OrigD+2
RTLAdr equ! OrigB+1
Ptr equ! RTLAdr+3

 phd
 phb
 phk
 plb

 lda! EventWhat
 cmp! #1! ! ; Mouse down event
 bne! call_um

 PushLong #MousePos! ; Temporary variable
 _GetMouse

 pha
 PushLong #Temp_Handle!; Temporary variable
 PushLong MousePos
 PushLong WindowHandle
 _FindCursorCtl
 pla

 pha
 pha
 PushLong Temp_Handle
 _GetCtlID
 pla
 plx

 cmp! #PictureID! ; Target Picture control ID
 bne! call_um

 PushLong Temp_Handle
 _MakeThisCtlTarget

call_um anop

 PushWord MyID
 _UMKeyAction

Finish the routine as shown in the earlier EventHook example.

Page 30

*** Optional calls that can also be made:

 pha
 _UMVersion
 pla! ! ! ; Returns the Version number of the Undo Manager

 pha
 _UMStatus
 pla! ! ! ; Boolean; True if Undo Manager is active,
! ! ! False if inactive

* Optional call for your custom routines that might be about to change text:

 PushWord refID
 _UMSaveClip! ; Saves a Clip for the currently active tool

* Optional call for your custom routines to clear any pending Undos for the
currently active control:

 PushWord refID
 _UMClearClips! ; Clears Clips for the currently active control

* Optional call to Clear all the Saved Clips for the passed app refID:

 PushWord refID
 _UMClear! ! ; Clear all Clips for all controls for this refID

* Optional call to Clear all saved clips for the active front window:

 PushWord refID
 _UMClearWindowClips! ; Clears all Clips for the front active window

* Optional call to LogOut and Clear all the Clips for all LoggedIn refIDs:

 _UMLogOutAll! ; LogOut and Clears Clips for all the refIDs
!

* Optional call to return information about the Clips stack for a control:

 PushWord refID
 PushLong UndoStatusBuffer
 PushLong ControlHandle
 _UMClipStatus! ; Returns Clips stack data for a control

The call is supplied with the refID or UserID of the calling application, a
Pointer to a UndoStatusBuffer, and the ControlHandle of the target control:

UndoStatusBuffer
NumberLoggedInApps ! word! Total 0-8
NumberControlsThisApp ! word! Total 0-32
NumberClipsThisControl ! word! Stack size 0-32
StackPointerThisControl !word! Undo Stack Pointer 0-32
LastKeypressThisControl !word! $17F, $7F, $100, $5A, $59, $58, $43, $56, $41

Page 31

The UndoStatusBuffer returns the number of applications currently logged in to the Tool,
the number of controls that have saved Clips for the supplied refID, the number of saved
Clips for the supplied ControlHandle or ObjectType, the current Undo stack pointer into
that stack, and the last keypress that the Undo Manager saw for that control.

Note that the Last Keypress value returned will be one of these values:

! $017F! =! Clear Menu selected, or OA-Delete pressed

! $007F! =! Delete pressed

! $0100! =! An ASCII key pressed

! $0200! =! Arrow key pressed

! $005A! =! Undo menu selected, or OA-Z pressed

! $0059! =! Redo menu selected, or OA-Y pressed

! $0058! =! Cut menu selected, or OA-X pressed

! $0043! =! Copy menu selected, or OA-C pressed

! $0056! =! Paste menu selected, or OA-V pressed

! $0041! =! Select All menu selected, or OAS-A pressed

Alternate strategy

An alternative strategy to the preferred method of using TMKeyAction and UMMenuAction
with a doModalWindow loop, and a strategy that can be used with applications only using
TaskMaster, is to use UMKeyAction2 instead. UMKeyAction2 can also be used where the Edit
Menu is not active or unavailable.

If you use UMKeyAction2 with a doModalWindow call, place the call into the EventHook.
With TaskMaster, you will need to use the call in your Key-down code, and may also need
to use UMMenuAction within your Menu calls. You will probably need to experiment to get
the desired result.

UMKeyAction2 is an alternative call to UMKeyAction, and in addition to the the keypresses
detailed in UMKeyAction, it traps the Open Apple equivalent keys of Undo, Redo, Cut,
Copy, Paste, and Select All as well. The keypresses are intercepted without the need for
a menu to be active, so for this call to work correctly, the Edit menu items must be OA-
Z, OA-Y, OA-X, OA-C, OA-V and OA-A. As ’Clear’ does not normally have a key equivalent,
it is not supported.

 PushWord refID
 PushWord eventMask
 _UMKeyAction2

Which events are acted on can be controlled by the passed eventMask:

 Bit 1 = Mouse-down events
 Bit 2 = Mouse-up events
 Bit 3 = Key-down events
 Bit 5 = Auto-key events
 Bit 14 = Delete key
 Bit 15 = OA-Delete key

Note: If you are using the call with TaskMaster, the Delete and OA-Delete keys will
already have been intercepted, so the character or selection to the left of the cursor
will already have been deleted before TaskMaster exits and reaches this call. This means
UMKeyAction2 is unable to capture to a Clip the text as it was before the keypress. This
will result in subsequent Undo calls returning an incorrect result. Where possible, use a
doModalWindow loop to avoid this happening.

Page 32

Undo Object Data Calls
The data saved from the UMPushUndoObject call, and recovered with PopUndoObject,
is not controlled by the Edit Menu commands, and apart from UMClear, UMLogout, and
UMClipStatus, the saved stacks are not controlled by the other Undo Manager calls. The
Object data clips stack is though counted as one of the thirty-two stacks that can be saved
by the Undo Manager, and like the other stacks, can have up to 32 levels in the clips stack.

An application after calling UMLogIn, can use these two calls as a simple way of storing
changing versions of data, and then be able to retrieve that data as required. Data is
passed to the UMPushUndoObject call in a Handle, and is then later returned to the
application as a Handle using the UMPopUndoObject call. By default, the passed data is
stored on the Object stack in the same way as with the other calls, and after 32 Handles
have been placed on the stack, the next call to UMPushUndoObject will roll off the first
item to have been saved. The passed Handle is either saved as a Handle using a local ID,
or if it is greater than 4K in size, to a file on disk as is the case with the other calls. When
the data is later "Popped", it is returned in a Handle, using the ID passed in the "refID"
field of the UMPopUndoObject call.

UMClear, as it clears all clips for a passed Application ID, will also clear any saved Object
data clips. Similarly, UMLogout, will clear any saved Object data clips for that Application
ID. UMClipStatus can be called to return the number of clips saved for a specific
"ObjectType", but only "NumberClipsThisControl" will be valid for the Object stack.

Saving Object Data Handle

Object Data must first be saved to the stack using the UMPushUndoObject call:

 Pushword refID! ; Application User ID
 PushWord ObjectType! ; Unique value for this stack
 PushLong ObjectHandle!; Handle holding data to be saved
 _UMPushUndoObject

ObjectType is a unique value given by the calling application, and is the same
value that must be used when calling UMPopUndoObject. This identifies the
correct stack to return a saved data Handle from. The value can be of any value,
so it is possible to save up to 32 data stacks using different ObjectTypes. As
an Object data stack counts as one of the 32 maximum stacks that Undo Manager
can control, it is advisable not to save too many stacks, thus leaving space for
any other controls you may wish to be handled by the Undo Manager.

ObjectHandle must be a standard Handle, can be of any size, and can hold any
form of data that you wish to temporarily save. Once passed, the Handle will be
given a new ID, so can no longer be controlled by the calling application.

The UMPushUndoObject call will always place new clips at the top of the stack.

Page 33

Restoring Object Data Handle

Object Data is returned from the saved stack using the UMPopUndoObject call:

 pha! ! ! ; space for returned Handle
 pha! ! ! ; space for returned Handle
 Pushword refID! ; Application User ID
 PushWord ObjectType! ; Unique value for this stack
 PushWord popObjectFlags ; flags control how the stack is to be handled
 _UMPopUndoObject
 PullLong ObjectHandle!; Handle holding returned data

ObjectType must be the same unique value that was used for UMPushUndoObject when
saving a related Handle to the stack.

popObjectFlags control where on the stack the ObjectHandle will be retrieved
from, and how the stack will be left after the ObjectHandle has been retrieved
(see examples and description below). If Bit 15 of popObjectFlags is set, and a
target clip is being recovered, if there are insufficient clips on the stack,
the umNoSavedClip Error will be returned.

ObjectHandle is the Handle to the returned data. It will be created with the
same refID as is passed by the call. The Handle can be handled again by the
calling application, and Deleted as necessary.

popObjectFlags

 Bit 15 ! 0 = Retrieves entry from top of stack
 Bit 15! 1 = Retrieves entry indicated by Bits 0-6 from stack
 Bit 14! 0 = Clears entry and all clips from this entry and above
 Bit 14! 1 = Don't clear any clips
 Bits 0-6! (Value = 1-32) Recovers target clip (Bit 15 must be set)

Sample calls:

 pha
 pha
 Pushword refID
 PushWord ObjectType
 pea! $0000! ; popObjectFlags
 _UMPopUndoObject
 PullLong ObjectHandle

With a value of $0000 for popObjectFlags, the call will return the Object Handle
from the top of the clips stack, clear the entry from the top of the stack, and
reduce the number of saved clips by one.

 pha
 pha
 Pushword refID
 PushWord ObjectType
 pea! $C00A! ; popObjectFlags
 _UMPopUndoObject
 PullLong ObjectHandle

With a value of $800A for popObjectFlags, the call will return the Object Handle
from position 10 on the stack. It will then clear that entry from the stack, and

Page 34

any newer entries above it from the stack, reduce the number of saved clips to
9, and set the stack pointer to 9.

 pha
 pha
 Pushword refID
 PushWord ObjectType
 pea! $4000! ; popObjectFlags
 _UMPopUndoObject
 PullLong ObjectHandle

With a value of $4000 for popObjectFlags, the call will return the Object Handle
from the top of the clips stack. It will not clear the entry from the stack, and
will leave the stack pointer, and the number of saved clips as it was. This
allows for a clip to be retrieved multiple times if necessary.

 pha
 pha
 Pushword refID
 PushWord ObjectType
 pea! $C008! ; popObjectFlags
 _UMPopUndoObject
 PullLong ObjectHandle

With a value of $C008 for popObjectFlags, the call will return the Object Handle
from position 8 on the stack. It will not clear the entry from the stack, and
will leave the stack pointer, and the number of saved clips as it was. This
allows for a clip to be retrieved multiple times if necessary from anywhere on
the stack.

Note: If you do not know how many clips are on the stack, call UMClipStatus to
return the number of clips in the stack. To identify the correct stack, pass
ObjectType+$80000000 instead of the ControlHandle value, and the number of clips
will be returned in the NumberClipsThisControl field.

To sum up: UMPushUndoObject always places new Handles on the top of the stack.
With the default value of $0000 passed for popObjectFlags, when the ObjectHandle
is retrieved using UMPopUndoObject, it will be returned from the top of the
stack.

By setting Bit 15 of popObjectFlags, an entry can be retrieved from within the
stack. This allows you to randomly recover a data Handle from the stack. Bits
0-6 of popObjectFlags holds the entry to recover. Valid values are 1-32.

The default is for the retrieved entry, and any entries above that entry on the
stack to be erased from the stack. By setting Bit 14 of popObjectFlags, the
retrieved entry, and any others above it in the stack will not be erased. This
allows you to save up to 32 Object data Handles, and randomly and repeatedly
retrieve them as you wish. If you wish to clear the stack completely, just call
UMPopUndoObject for the required stack, with popObjectFlags set to a value of
$8001. The application must delete the returned Handle when it is done with it.

If there are no more entries on the stack, or the entry number passed is higher
than the top of the stack, you will get the umNoSavedClip error. To avoid such
an error, call UMClipStatus before the UMPopUndoObject call, and see how many
clips the stack holds.

Page 35

Undo Manager Error Codes

umFailedLogin ! $8401! 16 apps already logged in
umAlreadyLoggedIn ! $8402! This refID already logged in
umNotLoggedIn ! $8403 ! This refID not logged in
umNoActiveControl ! $8404! No active LineEdit, TextEdit, or Picture control found
umNoSavedClip ! $8405! No Undo Clip was found
umClipBlockFull ! $8406! 64 controls already have Clips saved
umLowMemory ! $8407! Not enough memory to save Clip
umNoWindowFound! $8408! No active front window or controls found
umNotEnoughDiskSpace ! $8409! Not enough disk space to store Clip
umObjectHandleInvalid! $840A! Object Handle is invalid
umFailedCall ! $84FF! Generic failure

Version History:
v1.0.0! First release 29th May 2018
v1.0.1! Updated 20th July 2018
! Added UMKeyAction2 call (required for Spectrum 2.5.5)
v1.0.2! Updated September 2018
! Added UMPushUndoObject and UMPopUndoObject calls
v1.0.3 ! Updated August 2019
! UMLogIn now checks for required Tools being started

Page 36

Contacts - Problems

Hopefully you will have none, but if you do, and they cannot be answered by
reading these notes, please contact me on:

spectrumdaddy@speccie.uk

Contacts - Other information

Please check out my web site for a number of other utilities, Tools, and programs
that I have written:

http://speccie.uk

If you do not already know about Spectrum™, please drop by my web site and
read more. Apart from all the other wonderful things it does, Spectrum™ offers
many useful tools for processing files, such as post processing text files that you
have received that may have obstinate formatting.

Spectrum™ is now Freeware, and with all my many other applications, is available
from my web site:

http://speccie.uk

Someone once said to me, 'Spectrum™ does everything!'

Extras

mailto:spectrumdaddy@me.com
mailto:spectrumdaddy@me.com
http://homepage.mac.com/speccie/
http://homepage.mac.com/speccie/
http://homepage.mac.com/speccie/
http://homepage.mac.com/speccie/

